Muutke küpsiste eelistusi

E-raamat: Smart Structures: Innovative Systems for Seismic Response Control

(Office of Statewide Health Planning & Development, Los Angeles, California, USA), (Robertson-Ceco Corp., Oklahoma City, Oklahoma, USA), (University of Missouri, Rolla, USA)
  • Formaat: 672 pages
  • Ilmumisaeg: 25-Feb-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420008173
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 672 pages
  • Ilmumisaeg: 25-Feb-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420008173
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An innovative concept, smart structural systems have proven to be extremely effective in absorbing damaging energy and/or counteracting potentially devastating force, thus limiting structural collapse and subsequent injury. As this technology rapidly evolves, there is an ever-increasing need for an authoritative reference that will allow those in the field to stay abreast of the very latest advances.

Smart Structures: Innovative Systems for Seismic Response organizes current research and technology to provide researchers and practicing engineers, as well as advanced students, with the means to learn about and apply the very latest smart structure innovations. Key features include

Complete mathematical formulations and numerical procedures for topics presented New technologies Design guidelines and examples based on current official codes Consideration of smart structures on a variety of foundations Discussion of the use of smart structures with passive or semi-active devices Extensive references Designed for self-teaching, the text emphasizes essential information on structural formulations, mechanism of control systems, and numerical algorithms. It also provides step-by-step numerical examples to illustrate mathematical formulations and interpret physical representations, enabling readers to understand the forumulae vis-à-vis their applications. Each chapter comprehensively explores a specific topic, from smart structure systems currently in use, to case studies utilizing simulated earthquake data.
Preface xiii
Acknowledgments xv
Authors xvii
Chapter 1 Basic Concept of Smart Structure Systems 1
1.1 Introduction
1
1.1.1 Structures and Smart Structures
1
1.1.2 Significance of Smart Structure Technology for Civil Engineering Structures
2
1.2 Basic Principles of Smart Structure Technology for Seismic Response Control
3
1.3 History of Smart Structure Technology for Seismic-Response Control
6
1.4 Base-Isolation Systems
10
1.4.1 Introduction
10
1.4.2 Elastomeric Bearings
11
1.4.3 Lead-Plug Bearings
12
1.4.4 High-Damping Rubber Bearings
13
1.4.5 Friction Pendulum Bearings
14
1.4.6 Other Types of Base-Isolation Systems
15
1.5 Passive Energy-Dissipation Systems
16
1.5.1 Tuned Mass Dampers
17
1.5.2 Tuned Liquid Dampers
19
1.5.3 Friction Devices
20
1.5.4 Metallic Yield Devices
22
1.5.5 Viscoelastic Dampers
23
1.5.6 Viscous Fluid Dampers
24
1.6 Semiactive Damper Systems
26
1.6.1 Semiactive Tuned Mass Dampers
26
1.6.2 Semiactive Tuned Liquid Dampers
27
1.6.3 Semiactive Friction Dampers
28
1.6.4 Semiactive Vibration Absorbers
29
1.6.5 Semiactive Stiffness Control Devices
29
1.6.6 Electrorheological Dampers
31
1.6.7 Magnetorheological Dampers
32
1.6.8 Semiactive Viscous Fluid Damper
32
1.7 Active Control Systems
33
1.7.1 Basic Configuration of Active Control Systems
34
1.7.2 Active Mass Damper Systems
36
1.7.3 Active Tendon Systems
37
1.7.4 Active Brace Systems
38
1.7.5 Pulse Generation Systems
39
1.8 Hybrid Control Systems
40
1.8.1 Hybrid Mass Dampers
40
1.8.2 Hybrid Base-Isolation System
41
1.8.3 Hybrid Damper-Actuator Bracing Control
42
References
45
Chapter 2 Base Isolation Systems 51
2.1 Basic Concepts of Seismically Isolated Building Structures
51
2.1.1 Single-Degree-of-Freedom Motion Equations
51
2.1.2 Multiple-Degree-of-Freedom Motion Equations
54
2.2 Base Isolator Mechanical Characteristics and Computer Modeling Techniques
64
2.2.1 Introduction
64
2.2.2 Bilinear Model and Model Parameters
65
2.2.3 Bilinear Model of Lead-Plug Bearing System
67
2.2.4 Bilinear Model of High Damping Rubber System
68
2.2.5 Bilinear Model of Friction Pendulum System
69
2.2.6 Computer Modeling of Isolation System
70
2.3 Code Requirements for Design of Seismically Isolated Structures
72
2.3.1 Introduction
72
2.3.2 Seismic Ground Motion
73
2.3.3 Analysis Procedure Selection
76
2.3.4 Equivalent Lateral Force Procedure
78
2.3.5 Dynamic Analysis Procedure
85
2.4 Design Examples
90
2.5 Testing Verification and Determination of Isolator Properties
103
2.5.1 Testing Requirements of ASCE 7-05
103
2.5.2 Modifications of Isolator Properties
105
References
106
Chapter 3 Damping Systems 109
3.1 Basic Concepts of Building Structures with Damping System
109
3.1.1 Single-Degree-of-Freedom Motion Equations
109
3.1.2 Multiple-Degree-of-Freedom Motion Equations
115
3.2 Analysis Procedures and Code Requirements
118
3.2.1 Introduction
118
3.2.2 Response Spectrum Analysis
120
3.2.3 Equivalent Lateral Force Analysis
133
3.2.4 Nonlinear Static Procedure
138
3.2.5 Special Requirements on Nonlinear Response History Procedure
141
3.3 Design Examples
141
3.4 Testing Verification and Determination of Damping Device Properties
154
3.4.1 Introduction
154
3.4.2 Prototype Test Procedures
155
3.4.3 Acceptance Criteria for Velocity-Dependant Damping Devices
156
3.4.4 Acceptance Criteria for Displacement-Dependant Damping Devices
156
References
157
Chapter 4 Smart Seismic Structures Using Active Control Systems 159
4.1 Analytical Model of Smart Seismic Structures with Active Control
159
4.1.1 Motion Equations of Smart Seismic Structures with Active Tendon Control
160
4.1.2 Motion Equations of Smart Seismic Structures with Active Mass Damper
164
4.1.3 State-Variable Representation of Smart Seismic Structures
167
4.1.4 Feedback Law and Implementation Schemes
168
4.1.5 Solution Procedure for State Equation
174
4.2 Classical Optimal Control Algorithms for Smart Seismic Structures
182
4.2.1 Riccati Optimal Active Control Algorithm
183
4.2.2 Pole Placement Algorithm
201
4.3 Development of Active Control Algorithms for Seismic Smart Structures
205
4.3.1 Instantaneous Optimal Active Closed-Loop Control Algorithm
206
4.3.2 Generalized Optimal Active Control Algorithm
208
4.3.3 GOAC Algorithm for Nonlinear Smart Seismic Structures
223
4.4 Concluding Remarks
233
References
233
Chapter 5 Smart Seismic Structures Using Semiactive and Hybrid Control Systems 237
5.1 Dynamic Model of Control Devices for Semiactive and Hybrid Systems
238
5.1.1 Modeling of Servovalve-Controlled Hydraulic Actuators
238
5.1.2 Modeling of Passive Dampers
246
5.1.3 Modeling of Semiactive Dampers
252
5.2 Dynamic Model of Smart Seismic Structures with Semiactive or Hybrid Control
257
5.2.1 System Description
258
5.2.2 Shear Building Structures with Hybrid Devices on All Floors
259
5.2.3 Structures with Control Devices on Some Floors
263
5.2.4 Verification of the General Model for HDABC-Controlled Structures
266
5.2.5 State-Variable Representation of the HDABC System
271
5.2.6 Summary
279
5.3 Control Strategy and System Stability
280
5.3.1 Control Algorithms
280
5.3.2 Intelligent Hybrid Control Systems
281
5.3.3 Stabilization of Servovalve-Controlled Hydraulic Actuators
283
5.3.4 Effect of Actuator Dynamics on System Response
292
5.3.5 Summary
295
5.4 Effectiveness of HDABC System for Seismic Response Control
296
5.4.1 One-Story Smart Seismic Structure with HDABC System
296
5.4.2 Three-Story Smart Seismic Structure with HDABC System
302
5.4.3 Effectiveness Comparison of HDABC System and MR Damper
304
5.4.4 Summary
307
5.5 Implementation of Hybrid Control for Smart Seismic Structures
310
5.5.1 Test Setup
310
5.5.2 Parameter Identification of Control Devices
311
References
317
Chapter 6 Sensing and Data Acquisition Systems for Smart Seismic Structures 315
6.1 Common Sensors for Smart Seismic Structures
316
6.1.1 Linear or Rotary Variable Differential Transducer
318
6.1.2 Velocity Sensors
319
6.1.3 Accelerometers
320
6.1.4 Strain Gauges
324
6.1.5 Force Transducers
326
6.2 Sensing, Data Acquisition, and Digital Control Systems
328
6.2.1 Elements of Data Acquisition and Digital Control Systems
329
6.2.2 Challenges in Sensing System of Smart Structures
332
6.2.3 Solutions for the Sensing System of Smart Seismic Structures
333
6.3 Seismic Observer Technique
336
6.3.1 Analytical Modeling of Smart Seismic Structures with Accelerometers
336
6.3.2 Conventional Observer Technique
338
6.3.3 Development of Observer Technique for Smart Seismic Structures
342
6.3.4 Simplified Sensing System for Smart Seismic Structures
347
6.3.5 Summary
355
References
356
Chapter 7 Optimal Device Placement for Smart Seismic Structures 359
7.1 Introduction
359
7.1.1 Basic Concepts of Engineering Optimization
359
7.1.2 Significance of Optimal Device Placement for Smart Seismic Structures
361
7.1.3 Review of Former Studies on Optimal Device Placement
361
7.2 Optimal Actuator Placement for Smart Seismic Structures with Active Control
365
7.2.1 Measure of Modal Controllability
366
7.2.2 Performance Index
370
7.2.3 Controllability Index
375
7.2.4 Discussions on Performance Indices
394
7.3 Statistical Method for Optimal Device Placement of Smart Seismic Structures
394
7.3.1 System Description
395
7.3.2 Review of Stochastic Theory of Structural Seismic Response
397
7.3.3 Modal Analysis of Smart Structures with Hybrid System
398
7.3.4 Stochastic Seismic Response of Hybrid-Controlled Smart Structures
400
7.3.5 Determination of Optimal Placement of Control Devices
411
7.3.6 Numerical Studies
421
7.4 Summary
427
References
428
Chapter 8 Active Control on Embedded Foundation 431
8.1 Motion Equation of Actively Controlled Structure with Soil–Structure Interaction
431
8.1.1 System Definition
431
8.1.2 Single-Story Building
433
8.1.3 Multiple-Story Building
436
8.1.4 Determination of Interaction Force at Foundation-Soil Interface
440
8.2 State Equation of SSI—Model and Solution Technique
443
8.2.1 Formulation of State Equation of SSI-Model
443
8.2.2 Solution Technique
445
8.3 Generalized Optimal Active Control Algorithm for the SSI System
448
8.3.1 System Model
448
8.3.2 Generalized Performance Index
448
8.3.3 Feedback Gain Matrix and Active Control Force
450
8.3.4 Weighting Matrix Configuration
452
8.4 Soil Properties and Wave Equations
455
8.4.1 Dynamic-Equilibrium Equation
455
8.4.2 Earthquake Propagation Waves
460
8.5 Stiffness Coefficients of Horizontal Layer and Half Plane
469
8.5.1 Dynamic-Stiffness Coefficients of Horizontal Layer
469
8.5.2 Dynamic-Stiffness Coefficients of Half Plane
476
8.6 Dynamic-Stiffness Matrices of Ground System
480
8.6.1 Definition and Concept
480
8.6.2 Free-Field System's Stiffness Matrix
481
8.6.3 Excavated Part's Stiffness Matrix in Frequency Domain
487
8.6.4 Ground System's Stiffness and Flexibility Matrix
492
8.7 Numerical Illustrations
499
8.7.1 Solution Procedure of SSI System without Control
499
8.7.2 Solution Procedure of SSI System with Control
510
8.8 Computer Solutions for Building Structures with and without Control
516
8.9 Summary and Concluding Remarks
519
References
521
Chapter 9 Hybrid Control of Structures on Shallow Foundation with Existing and Generated Earthquakes 523
9.1 Introduction
523
9.1.1 Interaction Types
523
9.1.2 Substructure Approach
524
9.2 Structural Formulation with HDABC
526
9.2.1 Hybrid Controlled Single-Story Structure without SSI
526
9.2.2 Hybrid Controlled Single-Story Building with SSI
528
9.2.3 Hybrid Controlled Multiple-Story Building without SSI
532
9.2.4 Hybrid Controlled Multiple-Story Building with SSI
534
9.3 State Space Formulation of HDABC Systems with and without SSI
540
9.3.1 Single-Story Structural System without SSI
540
9.3.2 Single-Story Structural System with SSI
541
9.3.3 Multiple-Story Building System without SSI
542
9.3.4 Multiple-Story Structural System with SSI
543
9.4 Numerical Examples Using MATLAB®
544
9.4.1 Fixed Support without Control
545
9.4.2 SSI without Control
548
9.4.3 Fixed Support with Passive Control
552
9.4.4 SSI with Passive Control
554
9.4.5 Fixed Support with Active Control
556
9.4.6 Fixed Support with Hybrid Control
558
9.4.7 SSI with Hybrid Control
560
9.5 Extreme Value Distribution
563
9.5.1 Extreme Value and Description
564
9.5.2 Gumbel-Type Distribution
564
9.6 Ground Motion Generation
569
9.6.1 Modeling Concept
569
9.6.2 Ground Motion Generated at Bed Rock Surface
569
9.6.3 Ground Motion Generated at Ground Surface
572
9.6.4 One-Hundred Ground Motions Generated at m = 6 0
572
9.7 Case Studies Using Generated Earthquakes
573
9.7.1 Numerical Examples of Fixed Supported Buildings with and without Controls
573
9.7.2 Numerical Examples of Buildings with SSI and Hybrid Control
581
9.8 Concluding Remarks
581
References
582
Appendix A: MATLAB® 585
A.1 MATLAB® Language
585
A.2 Common Functions Used for Analysis and Design of Smart Seismic Structures
588
A.3 Sample MATLAB® .M Program
592
References
595
Appendix B: Green's Function 597
B.1 Displacements in k-Domain for Loads on Vertical Line
597
B.1.1 Fixed Layer (Part I)
597
B.1.2 Free Layer (Part II)
605
B.1.3 Global Displacements
607
B.2 Displacements in k-Domain for Loads on Horizontal Line
608
B.3 Displacement for Vertical Incident Wave
611
B.3.1 Loads on Vertical Line
611
B.3.2 Loads on Horizontal Line
617
B.4 Green's Influence Functions in Space Domain
618
Appendix C: Element Stiffness and Mass Coefficients 621
C.1 Element Stiffness Coefficients
621
C.2 Element Mass Coefficients
625
Notation 627
Index 643


Franklin Y. Cheng, Hongping Jiang, Kangyu Lou