Muutke küpsiste eelistusi

E-raamat: Smooth Nonlinear Optimization in Rn

  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Experience gained during a ten-year long involvement in modelling, program­ ming and application in nonlinear optimization helped me to arrive at the conclusion that in the interest of having successful applications and efficient software production, knowing the structure of the problem to be solved is in­ dispensable. This is the reason why I have chosen the field in question as the sphere of my research. Since in applications, mainly from among the nonconvex optimization models, the differentiable ones proved to be the most efficient in modelling, especially in solving them with computers, I started to deal with the structure of smooth optimization problems. The book, which is a result of more than a decade of research, can be equally useful for researchers and stu­ dents showing interest in the domain, since the elementary notions necessary for understanding the book constitute a part of the university curriculum. I in­ tended dealing with the key questions of optimization theory, which endeavour, obviously, cannot bear all the marks of completeness. What I consider the most crucial point is the uniform, differential geometric treatment of various questions, which provides the reader with opportunities for learning the structure in the wide range, within optimization problems. I am grateful to my family for affording me tranquil, productive circumstances. I express my gratitude to F.

Arvustused

`... it is a pleasure to see and read how Tamás Rapcsák combines differential geometry and other high-level mathematics to model and solve problems which belong to smooth nonlinear optimization. The book can be highly recommended to researchers and graduate students interested in optimization theory. In summary, this book is a vaulable contribution to the existing literature on smooth optimization in finite dimension.' Optimization, 46 (1999)

Muu info

Springer Book Archives
Preface.
1. Introduction.
2. Nonlinear Optimization Problems.
3.
Optimality Conditions.
4. Geometric Background of Optimality Conditions.
5.
Deduction of the Classical Optimality Conditions in Nonlinear Optimization.
6. Geodesic Convex Functions.
7. On the Connectedness of the Solution Set to
Complementarity Systems.
8. Nonlinear Coordinate Representations.
9. Tensors
in Optimization.
10. Geodesic Convexity on R°n+
11. Variable Metric Methods
Along Geodesics.
12. Polynomial Variable Metric Methods for Linear
Optimization.
13. Special Function Classes.
14. Fenchel's Unsolved Problem
of Level Sets.
15. An Improvement of the Lagrange Multiplier Rule for Smooth
Optimization Problems. A. On the Connection Between Mechanical Force
Equilibrium and Nonlinear Optimization. B. Topology. C. Riemannian Geometry.
References. Author Index. Subject Index. Notations.