This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative $d$-torus $\mathbb{T}^d_\theta$ (with $\theta$ a skew symmetric real $d\times d$-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincare type inequality for Sobolev spaces.
|
|
1 | (8) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
6 | (3) |
|
|
9 | (10) |
|
1.1 Noncommutative Lp-spaces |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (2) |
|
|
14 | (5) |
|
|
19 | (16) |
|
2.1 Distributions on quantum tori |
|
|
19 | (2) |
|
2.2 Definitions and basic properties |
|
|
21 | (4) |
|
2.3 A Poincare-type inequality |
|
|
25 | (3) |
|
|
28 | (3) |
|
2.5 The link with the classical Sobolev spaces |
|
|
31 | (4) |
|
|
35 | (24) |
|
3.1 Definitions and basic properties |
|
|
35 | (7) |
|
3.2 A general characterization |
|
|
42 | (6) |
|
3.3 The characterizations by Poisson and heat semigroups |
|
|
48 | (3) |
|
3.4 The characterization by differences |
|
|
51 | (3) |
|
3.5 Limits of Besov norms |
|
|
54 | (1) |
|
3.6 The link with the classical Besov spaces |
|
|
55 | (4) |
|
Chapter 4 Triebel-Lizorkin spaces |
|
|
59 | (24) |
|
|
59 | (9) |
|
4.2 Definitions and basic properties |
|
|
68 | (4) |
|
4.3 A general characterization |
|
|
72 | (4) |
|
4.4 Concrete characterizations |
|
|
76 | (4) |
|
4.5 Operator-valued Triebel-Lizorkin spaces |
|
|
80 | (3) |
|
|
83 | (10) |
|
5.1 Interpolation of Besov and Sobolev spaces |
|
|
83 | (5) |
|
5.2 The K-functional of (Lp, Wkp) |
|
|
88 | (3) |
|
5.3 Interpolation of Triebel-Lizorkin spaces |
|
|
91 | (2) |
|
|
93 | (10) |
|
6.1 Embedding of Besov spaces |
|
|
93 | (2) |
|
6.2 Embedding of Sobolev spaces |
|
|
95 | (5) |
|
|
100 | (3) |
|
Chapter 7 Fourier multiplier |
|
|
103 | (10) |
|
7.1 Fourier multipliers on Sobolev spaces |
|
|
103 | (4) |
|
7.2 Fourier multipliers on Besov spaces |
|
|
107 | (3) |
|
7.3 Fourier multipliers on Triebel-Lizorkin spaces |
|
|
110 | (3) |
Acknowledgements |
|
113 | (2) |
Bibliography |
|
115 | |
Xiao Xiong, Wuhan University, China, and Universite de Franche-Comte, Besancon, France.
Quanhua Xu, Wuhan University, China, and Universite de Franche-Comte, Besancon, France.
Zhi Yin, Wuhan University, China.