Muutke küpsiste eelistusi

E-raamat: Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture

(University of California, Riverside, USA)
  • Formaat: 432 pages
  • Ilmumisaeg: 02-Jul-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040210420
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 432 pages
  • Ilmumisaeg: 02-Jul-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040210420
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Focusing on Sobolev inequalities and their applications to analysis on manifolds and Ricci flow, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture introduces the field of analysis on Riemann manifolds and uses the tools of Sobolev imbedding and heat kernel estimates to study Ricci flows, especially with surgeries. The author explains key ideas, difficult proofs, and important applications in a succinct, accessible, and unified manner.

The book first discusses Sobolev inequalities in various settings, including the Euclidean case, the Riemannian case, and the Ricci flow case. It then explores several applications and ramifications, such as heat kernel estimates, Perelmans W entropies and Sobolev inequality with surgeries, and the proof of Hamiltons little loop conjecture with surgeries. Using these tools, the author presents a unified approach to the Poincaré conjecture that clarifies and simplifies Perelmans original proof.

Since Perelman solved the Poincaré conjecture, the area of Ricci flow with surgery has attracted a great deal of attention in the mathematical research community. Along with coverage of Riemann manifolds, this book shows how to employ Sobolev imbedding and heat kernel estimates to examine Ricci flow with surgery.

Arvustused

The approach here is somewhat different from that of Perelman. The author shows that the W-entropy and its monotonicity imply certain uniform Sobolev inequalities along Ricci flows. These are used in the proofs of the two steps mentioned above, bypassing the use of the reduced volume and reduced distance, which simplifies Perelmans proof considerably. John Urbas, Mathematical Reviews, Issue 2011m

This is a very good book on Ricci flows. Anyone who is interested to know the most recent development in Ricci flows and the Poincaré conjecture should take a look at the book. Zentralblatt MATH

It is clear as vodka that, as Zhang advertises in the Preface, the first half of the book is aimed at graduate students and the second half is intended for researchers. With some good timing, the same reader can start as one and continue as the other. a very important contribution to the genre. MAA Reviews, September 2010

Introduction. Sobolev Inequalities in the Euclidean Space. Basics of
Riemann Geometry. Sobolev Inequalities on Manifolds. Basics of Ricci Flow.
Perelmans Entropies and Sobolev Inequality. Ancient Solutions and
Singularity Analysis. Sobolev Inequality with Surgeries. Applications to the
Poincaré Conjecture. Bibliography. Index.
Qi S. Zhang is a professor of mathematics at the University of California, Riverside.