Preface |
|
xi | |
|
|
1 | (6) |
|
2 Review of basic functional analysis |
|
|
7 | (29) |
|
2.1 Normed and seminormed spaces |
|
|
7 | (6) |
|
2.2 Linear operators and dual spaces |
|
|
13 | (3) |
|
|
16 | (8) |
|
|
24 | (10) |
|
|
34 | (2) |
|
3 Lebesgue theory of Banach space-valued functions |
|
|
36 | (62) |
|
3.1 Measurability for Banach space-valued functions |
|
|
36 | (6) |
|
3.2 Integrable functions and the spaces Lp (X: V) |
|
|
42 | (7) |
|
3.3 Metric measure spaces |
|
|
49 | (24) |
|
|
73 | (17) |
|
|
90 | (6) |
|
|
96 | (2) |
|
4 Lipschitz functions and embeddings |
|
|
98 | (23) |
|
4.1 Lipschitz functions, extensions, and embeddings |
|
|
98 | (9) |
|
4.2 Lower semicontinuous functions |
|
|
107 | (3) |
|
|
110 | (1) |
|
4.4 Functions with bounded variation |
|
|
111 | (8) |
|
|
119 | (2) |
|
5 Path integrals and modulus |
|
|
121 | (22) |
|
5.1 Curves in metric spaces |
|
|
121 | (6) |
|
5.2 Modulus of a curve family |
|
|
127 | (7) |
|
5.3 Estimates for modulus |
|
|
134 | (7) |
|
|
141 | (2) |
|
|
143 | (24) |
|
6.1 Classical first-order Sobolev spaces |
|
|
143 | (8) |
|
|
151 | (5) |
|
6.3 Maps with p-integrable upper gradients |
|
|
156 | (10) |
|
|
166 | (1) |
|
|
167 | (38) |
|
7.1 Vector-valued Sobolev functions on metric spaces |
|
|
167 | (16) |
|
7.2 The Sobolev p-capacity |
|
|
183 | (7) |
|
7.3 N1.p (X: V) is a Banach space |
|
|
190 | (8) |
|
7.4 The space HN1.p(X: V) and quasicontinuity |
|
|
198 | (3) |
|
7.5 Main equivalence classes and the MECp property |
|
|
201 | (2) |
|
|
203 | (2) |
|
|
205 | (40) |
|
8.1 Poincare inequality and pointwise inequalities |
|
|
205 | (23) |
|
8.2 Density of Lipschitz functions |
|
|
228 | (5) |
|
8.3 Quasiconvexity and the Poincare inequality |
|
|
233 | (5) |
|
8.4 Continuous upper gradients and pointwise Lipschitz constants |
|
|
238 | (5) |
|
|
243 | (2) |
|
9 Consequences of Poincare inequalities |
|
|
245 | (40) |
|
9.1 Sobolev--Poincare inequalities |
|
|
245 | (16) |
|
9.2 Lebesgue points of Sobolev functions |
|
|
261 | (10) |
|
9.3 Measurability of equivalence classes and MECp |
|
|
271 | (8) |
|
9.4 Annular quasiconvexity |
|
|
279 | (3) |
|
|
282 | (3) |
|
10 Other definitions of Sobolev-type spaces |
|
|
285 | (21) |
|
10.1 The Cheeger--Sobolev space |
|
|
285 | (1) |
|
10.2 The Hajlasz--Sobolev space |
|
|
286 | (4) |
|
10.3 Sobolev spaces defined via Poincare inequalities |
|
|
290 | (4) |
|
10.4 The Korevaar--Schoen--Sobolev space |
|
|
294 | (10) |
|
|
304 | (1) |
|
|
304 | (2) |
|
11 Gromov--Hausdorff convergence and Poincare inequalities |
|
|
306 | (31) |
|
11.1 The Gromov--Hausdorff distance |
|
|
306 | (6) |
|
11.2 Gromov's compactness theorem |
|
|
312 | (3) |
|
11.3 Pointed Gromov--Hausdorff convergence |
|
|
315 | (9) |
|
11.4 Pointed measured Gromov--Hausdorff convergence |
|
|
324 | (3) |
|
11.5 Persistence of doubling measures under Gromov--Hausdorff convergence |
|
|
327 | (3) |
|
11.6 Persistence of Poincare inequalities under Gromov--Hausdorff convergence |
|
|
330 | (5) |
|
|
335 | (2) |
|
12 Self-improvement of Poincare inequalities |
|
|
337 | (27) |
|
12.1 Geometric properties of geodesic doubling metric measure spaces |
|
|
337 | (3) |
|
12.2 Preliminary local arguments |
|
|
340 | (15) |
|
12.3 Self-improvement of the Poincare inequality |
|
|
355 | (8) |
|
|
363 | (1) |
|
13 An introduction to Cheeger's differentiation theory |
|
|
364 | (23) |
|
13.1 Asymptotic generalized linearity |
|
|
364 | (5) |
|
13.2 Caccioppoli-type estimates |
|
|
369 | (2) |
|
13.3 Minimal weak upper gradients of distance functions are nontrivial |
|
|
371 | (2) |
|
13.4 The differential structure |
|
|
373 | (4) |
|
13.5 Comparisons between ru and Lip u, Taylor's theorem, and the reflexivity of N1.p (X) |
|
|
377 | (8) |
|
|
385 | (2) |
|
14 Examples, applications, and further research directions |
|
|
387 | (25) |
|
14.1 Quasiconformal and quasisymmetric mappings |
|
|
387 | (5) |
|
14.2 Spaces supporting a Poincare inequality |
|
|
392 | (15) |
|
14.3 Applications and further research directions |
|
|
407 | (5) |
References |
|
412 | (15) |
Notation Index |
|
427 | (2) |
Subject Index |
|
429 | |