Muutke küpsiste eelistusi

E-raamat: Social Laser: Application of Quantum Information and Field Theories to Modeling of Social Processes

  • Formaat: 280 pages
  • Ilmumisaeg: 12-Nov-2020
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781000730210
  • Formaat - PDF+DRM
  • Hind: 150,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 280 pages
  • Ilmumisaeg: 12-Nov-2020
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781000730210

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The recent years have been characterized by stormy social protests throughout the world. These protests have some commonalities, but at the same time, their sociopolitical, psychological, and economic contexts differ essentially. An important class of such protests is known as color revolutions. The analysis of these events in social and political literature is characterized by huge diversity of opinions. We remark that the sociopolitical perturbations under consideration are characterized by the cascade dynamics leading to the exponential amplification of coherent social actions. In quantum physics, such exponential and coherent amplification is the basic feature of laser’s functioning. (“Laser” is acronym for light amplification by stimulated emission of radiation). In this book we explore the theory of laser to model aforementioned waves of social protests, from color revolutions to Brexit and Trump’s election. We call such social processes Stimulated Amplification of Social Actions (SASA), but to keep closer to the analogy with physics we merely operate with the term “social laser.”

Preface xv
1 Introduction
1(22)
1.1 Interplay of Psychology and Physics: Historical Overview
1(5)
1.2 Quantum Brain
6(2)
1.3 Quantum-Like Modeling of Cognition and Decision Making
8(4)
1.3.1 From Probabilistic Foundations of Quantum Mechanics to Quantum-Like Modeling
8(2)
1.3.2 Quantum-Like Models Outside Physics
10(2)
1.4 Operational Formalism: Creation and Annihilation Operators
12(1)
1.5 Social Laser as a Fruit of the Quantum Information Revolution
13(2)
1.6 Bose--Einstein Statistics of Information Excitations
15(5)
1.7 Powerful Information Flows as the Basic Condition of Social Laser Functioning
20(1)
1.8 Resonators of Physical and Social Lasers
20(3)
2 Social Laser Model for Stimulated Amplification of Social Actions
23(16)
2.1 What Can Be Expected from the Social Laser Model?
24(1)
2.2 Color Revolutions
25(3)
2.3 Democratic Social Protests
28(1)
2.4 Social Energy Pumping
29(6)
2.5 Quick Relaxation
35(1)
2.6 Echo Chambers
36(1)
2.7 Conflating Opposition Protests with Warfare
37(2)
3 Basics of Physical Lasing
39(4)
3.1 Laser: History of Invention
39(1)
3.2 Spontaneous and Stimulated Emission
40(1)
3.3 Population Inversion
41(2)
4 Basics of Social Lasing
43(18)
4.1 Social Energy
45(3)
4.1.1 Energy of Social Atoms
46(1)
4.1.2 Energy of the Quantum Information Field
47(1)
4.2 Quantum Field Representation of the Information Flow Generated by Mass Media
48(1)
4.3 Coloring Information Excitations
49(3)
4.4 From Rough-Coloring to Indistinguishability
52(1)
4.5 The Role of Emotions in Transition to the Indistinguishability Mode: Illustration by Military and Revolutionary Propaganda
53(1)
4.6 Hidden Variables: Genuine Quantum versus Quantum-Like Models
54(2)
4.7 Coloring Role: Pumping versus Emission
56(1)
4.8 Comparing Stimulated Emission in Quantum Physics and the Bandwagon Effect in Psychology and Social Science
57(2)
4.9 Social Lasing Schematically
59(2)
5 Information Thermodynamics
61(8)
5.1 Thermodynamics from Combinatorics of State Distribution
61(2)
5.2 Thermodynamics of Distinguishable Systems
63(2)
5.3 Thermodynamics of Indistinguishable Systems
65(4)
5.3.1 Social Temperature
67(1)
5.3.2 Possible Statistics
67(2)
6 Thermodynamical Approach to Modeling Population Inversion for Social Laser
69(16)
6.1 Einstein Coefficients and Balance Equation for Human Gain Medium Interacting with Information Field
70(3)
6.2 Balance Equation for Steady State and Population Inversion
73(3)
6.3 Information Laser: The Four-Level Model
76(7)
6.3.1 Radiative versus Nonradiative Emission for Physical Atoms
76(1)
6.3.2 Mental Analogues of Radiative and Nonradiative Emissions
77(1)
6.3.3 Balance Equation for Steady State and Population Inversion
78(5)
6.4 Concluding Remark
83(2)
7 Laser Resonator
85(22)
7.1 Resonators of Physical Lasers
86(2)
7.1.1 Spontaneous Initiation of Physical Lasing
86(1)
7.1.2 Stimulated Initiation of Physical Lasing
87(1)
7.2 Resonators of Social Lasers
88(6)
7.2.1 Structure and Functioning of the Social Resonator
89(1)
7.2.1.1 Output beam from the echo chamber
90(1)
7.2.1.2 On a spatial picture of quantum physical processes
90(1)
7.2.2 Stimulated Initiation of Social Lasing
91(1)
7.2.3 Spontaneous Initiation of Social Lasing and Elimination of "Wrongly Colored" Information Excitations
92(1)
7.2.4 Energy Spectrum of the Output Beam: Physical versus Social Lasing
93(1)
7.3 Dynamics of the Quantum Information Field in the Social Laser Resonator
94(10)
7.3.1 Creation-Annihilation Algebras for s-Atoms and Quantum Information Field
96(1)
7.3.2 Dynamics of the Compound System s-Atom Field
97(2)
7.3.3 Gorini--Kossakowski--Sudarshan--Lindblad Equation for the State of the Quantum Information Field
99(1)
7.3.4 Social Interpretation of Assumptions for Derivation of Quantum Master Equation
100(2)
7.3.5 Probabilistic Consequences of the Quantum Markov Dynamics
102(2)
7.4 Concluding Remarks
104(3)
8 Correspondence between Notions and Parameters of the Theories of Physical and Social Lasers
107(24)
8.1 Laser as a Quantum System
109(7)
8.1.1 Bosonic and Fermionic Creation and Annihilation Operators in Laser Modeling
109(1)
8.1.2 Semiclassical Modeling of the Dynamics of the Laser Photon Field
110(3)
8.1.3 Characterization of the Coherence Properties of a Laser Beam with the Aid of Correlation Functions of the First and Second Order
113(2)
8.1.4 Phase Noise
115(1)
8.2 Laser as a Resonant Amplifier and a Generator: The Role of Positive Feedback
116(5)
8.2.1 Cavity Quality Factor
117(1)
8.2.2 Dynamics of Laser Beam Intensity
118(1)
8.2.3 Laser Oscillation Conditions
119(1)
8.2.4 Spontaneous Emission, Coherence, and Linewidth
120(1)
8.3 Correspondence between Structures and Parameters of Physical Laser and Information (Social) Laser
121(6)
8.3.1 Specification of the Basic Parameters of Physical Laser
123(1)
8.3.2 General Correspondence between Information and Physical Laser
124(3)
8.4 Laser Characteristics: Heuristic Pictures
127(4)
8.4.1 Resonators
127(2)
8.4.2 The Role of the Lasing Threshold
129(2)
9 Freudian Approach to Psychic Energy
131(10)
9.1 On the Notion of Representation According to Freud
132(9)
9.1.1 The Three Levels or Orders of a Representation: Introduction
132(2)
9.1.2 On the First Representation Level or Order
134(5)
9.1.3 On the Second and Third Representation Level or Order
139(2)
10 Introduction to Quantum Theory
141(36)
10.1 Classical Probability Theory: Kolmogorov's Measure-Theoretic Axiomatics
142(3)
10.2 Mathematical Structure of Quantum Theory
145(5)
10.2.1 Complex Hilbert Space
145(1)
10.2.2 Linear Operators
146(1)
10.2.3 Representation of (Pure) States by Normalized Vectors
147(1)
10.2.4 Representation of Mixed States by Density Operators
148(1)
10.2.5 Hilbert Space of Square Integrable Functions
149(1)
10.3 Postulates of Quantum Mechanics
150(5)
10.3.1 Projection Postulate, von Neumann versus Luders
154(1)
10.4 Operator Quantization: From Functions on Classical Phase Space to Hermitian Operators
155(1)
10.5 Two Basic Interpretations of a Quantum State
156(2)
10.6 Conditional Probability in Quantum Formalism
158(1)
10.7 Conditional Probability for Observables with a Nondegenerate Spectrum
159(2)
10.7.1 Independence of the Initial State
160(1)
10.7.2 Matrix of Transition Probabilities: Symmetric
160(1)
10.7.3 Matrix of Transition Probabilities: Double Stochasticity
160(1)
10.8 Interference of Probabilities for Incompatible Observables
161(1)
10.9 Logic of Quantum Propositions
162(2)
10.10 Tensor Product of Hilbert Spaces and Linear Operators
164(2)
10.11 Ket and Bra Vectors: Dirac's Symbolism
166(1)
10.12 Quantum Bit: Using State Superposition for Information Encoding
167(1)
10.13 Entanglement of Pure and Mixed Quantum States
168(1)
10.14 Two-Slit Experiment and Violation of the Classical Law of Total Probability
169(8)
10.14.1 On the Possibility of Classical Probabilistic Description of Quantum Experiments
169(3)
10.14.2 Interference of Wave Functions
172(5)
11 QBism: Subjective Probabilistic Interpretation of Quantum Mechanics
177(24)
11.1 QBism in Vaxjo
180(2)
11.2 Quantum Theory as Subjective Probability Machinery
182(6)
11.3 SIC-POVMs
188(1)
11.4 Comparing QBism and the Vaxjo Interpretation
188(2)
11.5 QBism Agents: Who Are You?
190(1)
11.6 QBism versus Copenhagen
191(2)
11.7 QBism versus the Information Interpretation of Zeilinger and Brukner
193(1)
11.8 Interpretations of Classical Probability Theory
194(3)
11.8.1 Kolmogorov's Interpretation of Probability
194(1)
11.8.2 Subjective Interpretation of Probability
195(1)
11.8.2.1 Subjective interpretation and mathematical representation of probabilities by measures
195(1)
11.8.2.2 Subjective probability as the basis of classical physics?
196(1)
11.9 QBism's Role in the Justification of Applications of Quantum Theory Outside of Physics
197(4)
12 Decision Making: Quantum-Like Model of Lottery Selection
201(34)
12.1 Lottery Selection: Why Quantum Probability?
202(6)
12.2 Classical versus Quantum (Subjective) Expected Utility
208(3)
12.3 Quantum Formalization of Selection of Lotteries
211(4)
12.3.1 Conventional Approach Based on Classical Probability
211(1)
12.3.2 Belief-State Space
212(2)
12.3.3 Transition Probabilities
214(1)
12.4 Dynamical Origin of Phases
215(2)
12.5 Belief State of a Decision Maker
217(2)
12.6 Operator Representation of the Process of Comparison of Lotteries
219(4)
12.7 Analysis of Operator-Based Comparison of Lotteries
223(4)
12.8 Lotteries with Two Outcomes: Uniform Probability Distribution
227(3)
12.9 Lotteries with Two Outcomes: General Case
230(1)
12.10 Mathematical Calculations
231(2)
12.11 Concluding Remarks
233(2)
References 235(18)
Index 253
Andrei Khrennikov is Professor of Mathematics at the Department of Mathematics at Linnaeus University. Andrei is also director of the research group International Center for Mathematical Modeling (ICMM) and organizer of some 20 conferences in the field of quantum theory at Linnaeus University.