Muutke küpsiste eelistusi

E-raamat: Soft Computing for Data Analytics, Classification Model, and Control

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a set of soft computing approaches and their application in data analytics, classification model, and control. The basics of fuzzy logic implementation for advanced hybrid fuzzy driven optimization methods has been covered in the book. The various soft computing techniques, including Fuzzy Logic, Rough Sets, Neutrosophic Sets, Type-2 Fuzzy logic, Neural Networks, Generative Adversarial Networks, and Evolutionary Computation have been discussed and they are used on variety of applications including data analytics, classification model, and control.

The book is divided into two thematic parts. The first thematic section covers the various soft computing approaches for text classification and data analysis, while the second section focuses on the fuzzy driven optimization methods for the control systems. The chapters has been written and edited by active researchers, which cover hypotheses and practical considerations; provide insights into the design of hybrid algorithms for applications in data analytics, classification model, and engineering control.


Chapter 1: An Optimization of Fuzzy Rough Set Nearest Neighbor
Classification Model using Krill Herd Algorithm for Sentiment Text
Analytics.-  Chapter 2: Fuzzy Wavelet Neural Network with Social Spider
Optimization Algorithm for Pattern Recognition in Medical Domain.
Chapter
3: Fuzzy with Gravitational Search Algorithm Tuned Radial Basis Function
Network for Medical Disease Diagnosis and Classification Model.- Chapter
4: Optimal Neutrosophic Rules based Feature Extraction for Data
Classification using Deep Learning Model.
Chapter 5: Self-Evolving Interval
Type-2 Fuzzy Neural Network Design for The Synchronization of Chaotic
Systems.
Chapter 6: Categorizing Relations via Semi-Supervised Learning
using a Hybrid Tolerance Rough Sets and Genetic Algorithm Approach.
Chapter
7: Data-driven Fuzzy C-Means Equivalent Turbine-governor for Power System
Frequency Response.
Chapter 8: Multicriteria group decision making using a
novel similarity measure for triangular fuzzy numbers based on their newly
defined expected values and variances.
Chapter 9: Bangla Printed Character
Generation from Handwritten Character Using GAN.