Muutke küpsiste eelistusi

E-raamat: Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery: The STIFF-FLOP Approach

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 109,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery presents the results of a research project funded by the European Commission, STIFF-FLOP: STIFFness controllable Flexible and Learn-able manipulator for surgical Operations.

In Minimally Invasive Surgery (MIS), tools go through narrow openings and manipulate soft organs that can move, deform, or change stiffness. There are limitations on modern laparoscopic and robot-assisted surgical systems due to restricted access through Trocar ports, lack of haptic feedback, and difficulties with rigid robot tools operating inside a confined space filled with organs. Also, many control algorithms suffer from stability problems in the presence of unexpected conditions. Yet biological "manipulators," like the octopus arm can manipulate objects while controlling the stiffness of selected body parts and being inherently compliant when interacting with objects. The STIFF-FLOP robot is an innovative soft robotic arm that can squeeze through a standard MIS, reconfigure itself and stiffen by hydrostatic actuation to perform compliant force control tasks while facing unexpected situations.

Technical topics discussed in the book include:

- Soft actuators
- Continuum soft manipulators
- Control, kinematics and navigation of continuum manipulators
- Optical sensors for force, torque, and curvature
- Haptic feedback and human interface for surgical systems
- Validation of soft stiffness controllable robots.
Preface xvii
Acknowledgements xxi
List of Contributors xxiii
List of Figures xxix
List of Tables liii
List of Abbreviations lv
Part I: Development of Silicone-based Stiffness Controllable Actuators
1 Technology Selection
3(20)
Matteo Cianchetti
Tommaso Ranzani
Giada Gerboni
Arianna Menciassi
1.1 Manipulator Specifications
3(3)
1.1.1 Medical Requirements
3(2)
1.1.2 Technical Specifications
5(1)
1.2 Technological Overview of Different Actuation Strategies
6(10)
1.2.1 Active Motion Technology Survey
6(1)
1.2.1.1 Electromagnetic motors
7(1)
1.2.1.2 Electro active polymers
7(1)
1.2.1.3 Shape memory alloys
8(1)
1.2.1.4 Shape memory polymers
8(1)
1.2.1.5 Flexible fluidic actuator
9(1)
1.2.2 Discussion and Choice of Active Motion Technology
9(3)
1.2.3 Stiffness Variation Technology Survey
12(3)
1.2.4 Comparison and Choice
15(1)
References
16(7)
2 Design of the Multi-module Manipulator
23(24)
Tommaso Ranzani
Iris de Falco
Matteo Cianchetti
Arianna Menciassi
2.1 The Design of the Single Module
23(3)
2.1.1 Active Motion
24(1)
2.1.2 Stiffness Variation
25(1)
2.2 Connection of Multiple Modules
26(3)
2.3 Complete Characterization of the 2-Module Manipulator
29(15)
2.3.1 Fabrication
30(1)
2.3.2 Workspace Evaluation
31(1)
2.3.2.1 Methods
32(1)
2.3.2.2 Results
34(3)
2.3.3 Junction Characterization
37(1)
2.3.3.1 Methods
37(1)
2.3.3.2 Results
38(1)
2.3.4 Stiffness Characterization
38(1)
2.3.4.1 Methods
38(1)
2.3.4.2 Results
39(2)
2.3.5 Combined Force and Stiffening Experiments
41(1)
2.3.5.1 Methods
41(1)
2.3.5.2 Results
43(1)
References
44(3)
3 Soft Manipulator Actuation Module - with Reinforced Chambers
47(18)
Jan Fras
Mateusz Macias
Jan Czarnowski
Margherita Brancadoro
Arianna Menciassi
Jakub Glowka
3.1 Introduction
47(4)
3.1.1 Change of the Chamber Cross Section Area
48(1)
3.1.2 Chamber Cross Section Center Displacement
48(1)
3.1.3 Friction between the Silicone Body and Braided Sleeve
49(1)
3.1.4 Sensor Interaction
50(1)
3.2 Proposed Improvements
51(3)
3.2.1 Possible Solutions
52(1)
3.2.2 Design
52(2)
3.3 Manufacturing
54(2)
3.4 Tests
56(3)
3.4.1 Pneumatic Actuation
56(2)
3.4.2 Hydraulic Actuation
58(1)
3.4.3 External Force
58(1)
3.5 Stiffening Mechanism
59(3)
3.5.1 Basic Module Design
60(1)
3.5.2 Optimised Module Design
61(1)
3.6 Conclusions
62(1)
Acknowledgement
62(1)
References
62(3)
4 Antagonistic Actuation Principle for a Silicone-based Soft Manipulator
65(14)
Ali Shiva
Agostino Stilli
Yohan Noh
Angela Faragasso
Iris De Falco
Giada Gerboni
Matteo Cianchetti
Arianna Menciassi
Kaspar Althoefer
Helge A. Wurdemann
4.1 Introduction
65(2)
4.2 Background
67(1)
4.3 Bio-Inspiration and Contributions
67(1)
4.4 Integration of the Antagonistic Stiffening Mechanism
68(3)
4.4.1 Embedding Tendon-driven Actuation into a STIFF-FLOP Segment
70(1)
4.4.2 Setup of the Antagonistic Actuation Architecture
70(1)
4.5 Test Protocol, Experimental Results, and Discussion
71(4)
4.5.1 Methodology
71(1)
4.5.2 Experimental Results
72(2)
4.5.3 Discussion
74(1)
4.6 Conclusions
75(1)
4.7 Funding
76(1)
References
76(3)
5 Smart Hydrogel for Stiffness Controllable Continuum Manipulators: A Conceptual Design
79(20)
Daniel Guevara Mosquera
S.M. Hadi Sadati
Kaspar Althoefer
Thrishantha Nanayakkara
5.1 Introduction
80(4)
5.2 Materials and Methods
84(4)
5.2.1 Active Hydrogel Preparation
84(3)
5.2.2 Active Hydrogel Properties and Ion Pattern Printing
87(1)
5.3 Experiments and Discussion
88(2)
5.3.1 Swelling Test
88(1)
5.3.2 Stiffness Test
88(2)
5.4 Conclusion and Future Works
90(1)
References
91(8)
Part II: Creation and Integration of Multiple Sensing Modalities
6 Optical Force and Torque Sensor for Flexible Robotic Manipulators
99(10)
Yohan Noh
Sina Sareh
Emanuele Lindo Secco
Kaspar Althoefer
6.1 Introduction
100(1)
6.2 Materials and Methods
101(3)
6.2.1 Sensor Design Rational
101(1)
6.2.2 Sensor Configurations
101(3)
6.3 Results and Discussion
104(1)
6.4 Conclusions
105(1)
References
106(3)
7 Pose Sensor for STIFF-FLOP Manipulator
109(20)
Sina Sareh
Yohan Noh
Tommaso Ranzani
Min Li
Kaspar Althoefer
7.1 Introduction
109(2)
7.2 Design of the Pose-sensing System
111(7)
7.2.1 Pose-sensing in a One Segment STIFF-FLOP Arm
111(4)
7.2.2 The Flexible Steiner Chain Section
115(2)
7.2.3 Design of a Low-friction Retractable Distance Modulation Array
117(1)
7.2.3.1 Loopback design of the optical system
117(1)
7.2.3.2 Steel spring-needle double slider
117(1)
7.3 Fabrication and Assembly of the Pose-sensing System
118(1)
7.4 Sensor Calibration and Benchmarking
119(3)
7.5 Calculation of the Bending Curvature in a Two-segment Arm Based on Collocated Cables
122(1110)
7.6 Conclusion
1232
Acknowledgement
124(1)
References
124(5)
8 The STIFF-FLOP Vision System
129(22)
Erwin Gerz
Matthias Mende
Hubert Roth
8.1 Introduction
129(1)
8.2 Optical Tracking of the STIFF-FLOP Arm
130(15)
8.2.1 Axios Measurement System Cambar B2
130(2)
8.2.2 The Endoscopic Camera System
132(1)
8.2.3 Image Processing on Endoscopic Camera Images
133(1)
8.2.3.1 Removal of specular reflections
134(1)
8.2.3.2 Improvement of the dynamic range
136(1)
8.2.4 Detection of the STIFF-FLOP Arm in the Camera Image using Machine Learning Algorithms
137(1)
8.2.5 Detection of the Module Connection Points of the STIFF-FLOP Arm
141(2)
8.2.6 Registration of the Endoscopic Camera Image to the STIFF-FLOP Arm
143(2)
8.3 Integration and Validation of the Implemented Methods
145(1327)
8.4 Conclusion
1472
Acknowledgements
147(1)
References
147(4)
Part III: Control, Kinematics and Navigation
9 Inverse Kinematics Methods for Flexible Arm Control
151(34)
Anthony Remazeilles
Asier Fernandez Iribar
Alfonso Dominguez Garcia
9.1 Introduction
152(4)
9.1.1 On the Inverse Kinematics Problem for Continuum Robots
152(2)
9.1.2 Single Insertion Point Constraint in Minimally Invasive Surgery
154(1)
9.1.3 Contributions Presented
155(1)
9.2 Inverse Kinematics Framework
156(11)
9.2.1 General Framework
156(2)
9.2.2 Application to the STIFF-FLOP Structure
158(1)
9.2.3 Configuration Space of the Flexible Modules
159(1)
9.2.4 STIFF-FLOP Base Motion with Single Insertion Point Constraint
160(4)
9.2.5 Secondary Tasks through Redundancy
164(1)
9.2.5.1 Control of the chamber lengths
164(1)
9.2.5.2 Control of the interaction with the environment
165(2)
9.3 Inverse Kinematic Experimentations
167(14)
9.3.1 Fixed Base, Various Module Representation
167(4)
9.3.2 Inverse Kinematics Involving the Base under Single Point Insertion Constraint
171(5)
9.3.3 Illustration of the Secondary Tasks
176(5)
9.4 Conclusion
181(1)
References
182(3)
10 Modelling and Position Control of the Soft Manipulator
185(12)
Jan Fras
Mateusz Macias
Jan Czarnowski
Jakub Glowka
10.1 Introduction
185(1)
10.2 Assumptions
186(1)
10.3 Single Segment Model
186(3)
10.4 External Forces
189(2)
10.5 Analytical Issues
191(2)
10.6 Inverse Kinematics
193(2)
10.7 Conclusion
195(1)
Acknowledgments
196(1)
References
196(1)
11 Reactive Navigation for Continuum Manipulator in Unknown Environments
197(24)
Ahmad Ataka
Ali Shiva
Kaspar Althoefer
11.1 Introduction
197(2)
11.2 Modeling and Pose Estimation
199(4)
11.2.1 Kinematic Model
199(3)
11.2.2 Pose Estimation
202(1)
11.3 Reactive Navigation
203(7)
11.3.1 Electric-field-based Navigation
204(1)
11.3.2 Magnetic-field-based Navigation
205(4)
11.3.3 The Complete Algorithm
209(1)
11.4 Results and Discussion
210(1942)
11.4.1 Discussion
214(1938)
11.5 Conclusion
2152
Acknowledgement
215(1)
References
215(6)
Part IV: Human Interface
12 The Design of a Functional STIFF-FLOP Robot Operator's Console
221(8)
Lukasz Mucha
Krzysztof Lis
Dariusz Krawczyk
Zbigniew Nawrat
12.1 Introduction
221(1)
12.2 Design of Improved Haptic Console
222(4)
12.2.1 Second Version of STIFF-FLOP Console
225(1)
12.3 Conclusion
226(1)
Acknowledgments
227(1)
References
227(2)
13 Haptic Feedback Modalities for Minimally Invasive Surgery
229(22)
Min Li
Jelizaveta Konstantinova
Kaspar Althoefer
13.1 Introduction
229(1)
13.2 Force Feedback
230(3)
13.2.1 Experimental Setup to Validate the Experimental Tele-manipulator and the Force Feedback Platform
230(3)
13.2.2 Evaluation of the Experimental Tele-manipulator and Force Feedback Platform
233(1)
13.3 Visual Stiffness Feedback
233(4)
13.3.1 Experimental Setup to Validate the Concept of Visual Stiffness Feedback
234(2)
13.3.2 Evaluation of Visual Stiffness Feedback
236(1)
13.4 Pseudo-haptic Tissue Stiffness Feedback
237(4)
13.4.1 The Concept of Pseudo-haptic Tissue Stiffness Feedback
237(1)
13.4.2 The Combined Pseudo-haptic and Force Feedback
238(1)
13.4.3 Evaluation of Pseudo-haptic Stiffness Feedback
238(3)
13.5 Haptic Feedback Actuators
241(4)
13.5.1 Experimental Setup to Validate the Finger-tip Haptic Feedback Actuators
241(3)
13.5.2 Evaluation Results of Finger-tip Haptic Feedback Actuators
244(1)
13.6 Conclusion
245(1)
Acknowledgments
245(1)
References
245(6)
14 Force Feedback Sleeve Using Pneumatic and Micro Vibration Actuators
251(12)
Lukasz Mucha
Krzysztof Lis
14.1 Introduction
251(1)
14.2 Application of the Pneumatic Impact Interaction
252(1)
14.3 Control
253(1)
14.4 Applications of Electric Vibration Motors
254(5)
14.5 Conclusion
259(2)
Acknowledgments
261(1)
References
261(2)
15 Representation of Distributed Haptic Feedback Given via Vibro-tactile Actuator Arrays
263(26)
Anuradha Ranasinghe
Ashraf Weheliye
Prokar Dasgupta
Thrishantha Nanayakkara
15.1 Introduction
264(3)
15.2 Materials and Methods
267(7)
15.2.1 Haptic Primitive Templates Generation
268(1)
15.2.2 Experimental Procedure
268(1)
15.2.3 Data Processing and Statistical Analysis
269(1)
15.2.4 Experiment 1: To Understand How Humans Generalize a Gaussian Pattern in Scaling and Shifting
270(2)
15.2.5 Experiment 2(a): To Understand How Humans can Recognize Trained Templates When they are Presented in a Random Order
272(1)
15.2.6 Experiment 2(b): To Understand How Humans Can Recognize Trained Inverse Templates When They are Presented in a Random Order
272(1)
15.2.7 Experiment 3: To Understand How Humans can Recognize Random Linear Combinations of Trained Primitive Templates Given by a Set of Discrete Vibro-Actuators on the Forearm
273(1)
15.3 Results
274(7)
15.3.1 Experiment 1
274(3)
15.3.2 Experiment 2(a)
277(1)
15.3.3 Experiment 2(b)
278(2)
15.3.4 Experiment 3
280(1)
15.4 Discussion
281(3)
Acknowledgment
284(1)
References
284(5)
16 RobinHand Haptic Device
289(20)
Krzysztof Lis
Lukasz Mucha
Krzysztof Lehrich
Zbigniew Nawrat
16.1 Introduction
289(1)
16.2 The User Interface RobinHand
290(5)
16.3 RobinHand in STIFF-FLOP Project
295(1)
16.4 Operator-Robot Cooperation through Teleoperation and Haptic Feedback
295(6)
16.4.1 Telemanipulation FCSD-UoS RobinHand H
296(3)
16.4.2 Telemanipulation FCSD-PIAP RobinHand F
299(1)
16.4.3 Telemanipulation FCSD-KCL RobinHand F
300(1)
16.5 Integrating the Haptic Device RobinHand L with STIFF-FLOP Console
301(2)
16.6 Conclusion
303(1)
Acknowledgments
303(1)
References
304(5)
Part V: Benchmarking Platform for STIFF-FLOP Validation
17 Benchmarking for Surgery Simulators
309(16)
Zbigniew Malota
Zbigniew Nawrat
Wojciech Sadowski
17.1 Introduction
310(1)
17.2 Testing and Training Station Description
311(11)
17.2.1 The New Scaled Surgery Benchmarking Platforms
311(3)
17.2.2 Sensorized Operation Site
314(3)
17.2.3 The Scaled Surgery Benchmarking Platforms
317(4)
17.2.4 The Virtual Reality Model
321(1)
17.3 Conclusion
322(1)
Acknowledgments
322(1)
References
322(3)
18 Miniaturized Version of the STIFF-FLOP Manipulator for Cadaver Tests
325(14)
Giada Gerboni
Margherita Brancadoro
Alessandro Diodato
Matteo Cianchetti
Arianna Menciassi
18.1 Requirements for Manipulator Usability in Cadaver Tests
325(1)
18.2 System Adaptation
326(3)
18.3 System Modeling and Characterization Methods
329(3)
18.4 Results of Characterization
332(2)
18.5 Prototype for Cadaver Test (with Integrated Camera)
334(3)
References
337(2)
19 Total Mesorectal Excision Using the STIFF-FLOP Soft and Flexible Robotic Arm in Cadaver Models
339(18)
Marco Ettore Allaix
Marco Augusto Bonino
Simone Arolfo
Mario Morino
Yoav Mintz
Alberto Arezzo
19.1 Introduction
340(1)
19.2 Methods
341(5)
19.3 Operative Technique
346(1)
19.4 Results
347(2)
19.5 Discussion
349(2)
19.6 Conclusions
351(1)
References
351(6)
Index 357(2)
About the Editors 359
Jelizaveta Konstantinova, Helge Wurdemann, Ali Shafti