Muutke küpsiste eelistusi

E-raamat: Soft-Switching Technology for Three-phase Power Electronics Converters

  • Formaat - PDF+DRM
  • Hind: 154,31 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book focuses on soft switching three-phase converters for applications such as renewable energy and distribution power systems, AC power sources, UPS, motor drives, battery chargers, and more. It begins with an introduction to fundamental of soft switching technology for three-phase conversion. The author provides basic knowledge of soft-switching technology to give readers necessary background information for the following subjects. The book goes on to describe applying soft-switching technology to three-phase rectifiers, then three-phase grid inverters. The author provides porotypes and expermients of each. Finally, the book investigates the impact of silicon carbide (SiC) devices on soft-switching three converters, studying the improvement of efficiency and power density by introducing SiC to soft-switching three-phase converters"--

Soft-Switching Technology for Three-phase Power Electronics Converters

Discover foundational and advanced topics in soft-switching technology, including ZVS three-phase conversion

In Soft-Switching Technology for Three-phase Power Electronics Converters, an expert team of researchers delivers a comprehensive exploration of soft-switching three-phase converters for applications including renewable energy and distribution power systems, AC power sources, UPS, motor drives, battery chargers, and more. The authors begin with an introduction to the fundamentals of the technology, providing the basic knowledge necessary for readers to understand the following articles.

The book goes on to discuss three-phase rectifiers and three-phase grid inverters. It offers prototypes and experiments of each type of technology. Finally, the authors describe the impact of silicon carbide devices on soft-switching three-phase converters, studying the improvement in efficiency and power density created via the introduction of silicon carbide devices.

Throughout, the authors put a special focus on a family of zero-voltage switching (ZVS) three-phase converters and related pulse width modulation (PWM) schemes.

The book also includes:

  • A thorough introduction to soft-switching techniques, including the classification of soft-switching for three phase converter topologies, soft-switching types and a generic soft-switching pulse-width-modulation known as Edge-Aligned PWM
  • A comprehensive exploration of classical soft-switching three-phase converters, including the switching of power semiconductor devices and DC and AC side resonance
  • Practical discussions of ZVS space vector modulation for three-phase converters, including the three-phase converter commutation process
  • In-depth examinations of three-phase rectifiers with compound active clamping circuits

Perfect for researchers, scientists, professional engineers, and undergraduate and graduate students studying or working in power electronics, Soft-Switching Technology for Three-phase Power Electronics Converters is also a must-read resource for research and development engineers involved with the design and development of power electronics.

Preface xiii
Nomenclature xi
Part 1 Fundamental of Soft-switching 1(118)
1 Introduction
3(24)
1.1 Requirement of Three-phase Power Conversions
3(7)
1.1.1 Three-phase Converters
3(2)
1.1.2 Switching Frequency vs. Conversion Efficiency and Power Density
5(4)
1.1.3 Switching Frequency and Impact of Soft-switching Technology
9(1)
1.2 Concept of Soft-switching Technique
10(4)
1.2.1 Soft-switching Types
11(2)
1.2.2 Soft-switching Technique for Three-phase Converters
13(1)
1.3 Applications of Soft-switching to Three-phase Converters
14(8)
1.3.1 Renewable Energy and Power Generation
14(3)
1.3.2 Energy Storage Systems
17(2)
1.3.3 Distributed FACTS Devices
19(1)
1.3.4 Uninterruptible Power Supply
19(2)
1.3.5 Motor Drives
21(1)
1.3.6 Fast EV Chargers
21(1)
1.3.7 Power Supply
22(1)
1.4 The Topics of This Book
22(1)
References
23(4)
2 Basics of Soft-switching Three-phase Converters
27(44)
2.1 Introduction
27(1)
2.2 Switching Characteristics of Three-phase Converters
28(11)
2.2.1 Control of Three-phase Converters
28(3)
2.2.2 Switching Transient Process and Switching Loss
31(3)
2.2.3 Diode Turn-off and Reverse Recovery
34(1)
2.2.4 Stray Inductance on Switching Process
35(3)
2.2.5 Snubber
38(1)
2.3 Classification of Soft-switching Three-phase Converters
39(1)
2.4 DC-side Resonance Converters
40(14)
2.4.1 Resonant DC-link Converters
40(5)
2.4.2 Active-clamped Resonant DC-link (ACRDCL) Converter
45(1)
2.4.3 ZVS-SVM Active-clamping Three-phase Converter
46(8)
2.4.3.1 Active-clamping DC-DC Converter
46(6)
2.4.3.2 Active-clamping Three-phase Converter
52(2)
2.5 AC-side Resonance Converters
54(8)
2.5.1 Auxiliary Resonant Commutated Pole Converter
55(4)
2.5.2 Coupled-inductor Zero Voltage-transition (ZVT) Inverter
59(3)
2.5.3 Zero-current Transition (ZCT) Inverter
62(1)
2.6 Soft-switching Inverter with TCM Control
62(4)
2.7 Summary
66(1)
References
67(4)
3 Soft-switching PWM Control for Active Clamped Three-phase Converters
71(48)
3.1 Introduction
71(1)
3.2 PWM of Three-phase Converters
72(4)
3.3 Edge-aligned PWM
76(1)
3.4 ZVS Active-clamping Converter with Edge-aligned PWM
77(28)
3.4.1 Stage Analysis
78(10)
3.4.2 ZVS Conditions
88(11)
3.4.2.1 The First Resonant Stage
88(3)
3.4.2.2 The Second Resonant Stage
91(2)
3.4.2.3 Steady Conditions
93(6)
3.4.3 Impact of PWM Scheme and Load on ZVS Condition
99(6)
3.5 Control Diagram of the Converter with EA-PWM
105(2)
3.6 ZVS-SVM
107(8)
3.6.1 Vector Sequence
109(2)
3.6.2 ZVS-SVM Scheme
111(2)
3.6.3 Characteristics of the Converter with ZVS-SVM
113(2)
3.7 Summary
115(1)
References
116(3)
Part 2 ZVS-SVM Applied to Three-phase Rectifiers 119(74)
4 Three-phase Rectifier with Compound Active-clamping Circuit
121(38)
4.1 Introduction
121(1)
4.2 Operation Principle of CAC Rectifier
122(12)
4.2.1 Space Vector of Three-phase Grid Voltage
122(2)
4.2.2 Space Vector Modulation of Three-phase Converter
124(2)
4.2.3 Switching Scheme of CAC Rectifier
126(8)
4.3 Circuit Analysis
134(13)
4.3.1 Operation Stage Analysis
134(4)
4.3.2 Resonant Stages Analysis
138(4)
4.3.3 Steady State Analysis
142(2)
4.3.4 Soft-switching Condition
144(1)
4.3.5 Control Technique of Compound Active-clamping Three-phase Rectifier
145(2)
4.4 Prototype Design
147(9)
4.4.1 Specifications of a 40 kW Rectifier
147(1)
4.4.2 Parameter Design
147(4)
4.4.3 Experiment Platform and Testing Results
151(5)
4.5 Summary
156(1)
References
156(3)
5 Three-phase Rectifier with Minimum Voltage Active-clamping Circuit
159(34)
5.1 Introduction
159(1)
5.2 Operation Principle of MVAC Rectifier
159(9)
5.2.1 Space Vector Modulation of Three-phase Converter
159(3)
5.2.2 Switching Scheme of MVAC Rectifier
162(6)
5.3 Circuit Analysis of MVAC Rectifier
168(16)
5.3.1 Operation Stage Analysis
168(5)
5.3.2 Resonant Stages Analysis
173(4)
5.3.3 Steady State Analysis
177(2)
5.3.4 Soft-switching Condition
179(3)
5.3.5 Control Technique of Minimum Voltage Active-clamping Three-phase Rectifier
182(2)
5.4 Prototype Design
184(7)
5.4.1 Specifications of a 30 kW Rectifier
184(1)
5.4.2 Parameter Design
184(3)
5.4.3 Experiment Platform and Testing Results
187(4)
5.5 Summary
191(1)
References
192(1)
Part 3 ZVS-SVM Applied to Three-phase Grid Inverters 193(128)
6 Three-phase Grid Inverter with Minimum Voltage Active-clamping Circuit
195(36)
6.1 Introduction
195(1)
6.2 Operation Principle of MVAC Inverter
195(15)
6.2.1 Space Vector of Three-phase Grid Voltage
195(2)
6.2.2 Space Vector Modulation of Three-phase Inverter
197(3)
6.2.3 Switching Scheme of MVAC Inverter Under Unit Power Factor
200(6)
6.2.4 Generalized Space Vector Modulation Method of MVAC Inverter with Arbitrary Output
206(4)
6.3 Circuit Analysis
210(11)
6.3.1 Operation Stage Analysis
210(4)
6.3.2 Resonant Stages Analysis
214(3)
6.3.3 Steady-state Analysis
217(1)
6.3.4 Soft-switching Condition
218(1)
6.3.5 Control Technique of MVAC Inverter
219(2)
6.4 Design Prototype
221(9)
6.4.1 Specifications of a 30-kW Inverter
221(1)
6.4.2 Parameter Design
222(3)
6.4.3 Experiment Results
225(5)
6.5 Summary
230(1)
References
230(1)
7 Three-phase Inverter with Compound Active-clamping Circuit
231(34)
7.1 Introduction
231(1)
7.2 Scheme of ZVS-SVM
232(6)
7.2.1 Switch Commutations in Main Bridges of Three-phase Inverter
232(1)
7.2.2 Derivation of ZVS-SVM
233(5)
7.3 Circuit Analysis
238(14)
7.3.1 Operation Stage Analysis
238(5)
7.3.2 Resonant Stages Analysis
243(4)
7.3.3 Steady-state Analysis
247(3)
7.3.4 Soft-switching Condition
250(1)
7.3.5 Resonant Time Comparison
250(2)
7.4 Implementation of ZVS-SVM
252(4)
7.4.1 Regulation of Short Circuit Stage
252(1)
7.4.2 Implementation in Digital Controller
252(3)
7.4.3 Control Block Diagram with ZVS-SVM
255(1)
7.5 Prototype Design
256(7)
7.5.1 Specifications of a 30-kW Inverter
256(1)
7.5.2 Parameter Design
256(10)
7.5.2.1 Requirement of Diode Reverse Recovery Suppression
256(1)
7.5.2.2 Requirement of Voltage Stress
257(1)
7.5.2.3 Requirement of Reducing Turn-off Loss in Auxiliary Switch
257(1)
7.5.2.4 Requirement of Minimum Resonant Capacitance
258(1)
7.5.2.5 Requirement of Resonant Time
258(1)
7.5.3 Experiment Platform and Testing Results
259(4)
7.6 Summary
263(1)
References
263(2)
8 Loss Analysis and Optimization of a Zero-voltage-switching Inverter
265(32)
8.1 Introduction
265(1)
8.2 Basic Operation Principle of the CAC ZVS Inverter
266(10)
8.2.1 Operation Stage Analysis
266(6)
8.2.2 ZVS Condition Derivation
272(4)
8.3 Loss and Dimension Models
276(12)
8.3.1 Loss Model of IGBT Devices
276(5)
8.3.1.1 Conduction Loss of IGBT Devices
276(2)
8.3.1.2 Switching Loss of the IGBT Devices
278(3)
8.3.2 Loss and Dimension Models of Resonant Inductor
281(2)
8.3.3 Loss and Dimension Models of the Filter Inductor
283(1)
8.3.4 Dimension Model of Other Components
284(4)
8.3.4.1 Clamping Capacitor
284(1)
8.3.4.2 Heat Sink
285(3)
8.4 Parameters Optimization and Design Methodology
288(4)
8.4.1 Objective Function
288(1)
8.4.2 Constrained Conditions
289(1)
8.4.3 Optimization Design
290(2)
8.5 Prototype and Experimental Results
292(3)
8.6 Summary
295(1)
References
296(1)
9 Design of the Resonant Inductor
297(24)
9.1 Introduction
297(1)
9.2 Fundamental of Inductor
297(2)
9.3 Design Methodology
299(4)
9.3.1 Cross-section Area of the Core Ac
300(1)
9.3.2 Window Area Ae
300(1)
9.3.3 Area-product Ap
300(1)
9.3.4 Turns of Winding N
301(1)
9.3.5 Length of the Air Gap lg
301(1)
9.3.6 Winding Loss Pdc
301(1)
9.3.7 Core Loss Pcore
302(1)
9.3.8 Design Procedure
303(1)
9.4 Design Example
303(14)
9.4.1 Barrel Winding Discussion
305(6)
9.4.1.1 Winding Position Discussion
306(4)
9.4.1.2 Winding Thickness Discussion
310(1)
9.4.2 Flat Winding Discussion
311(6)
9.4.2.1 Different Structures Comparison
311(3)
9.4.2.2 Winding Position Discussion
314(3)
9.5 Design Verification
317(3)
9.5.1 Simulation Verification
317(1)
9.5.2 Experimental Verification
318(2)
9.6 Summary
320(1)
References
320(1)
Part 4 Impact of SiC Device on Soft-switching Grid Inverters 321(120)
10 Soft-switching SiC Three-phase Grid Inverter
323(48)
10.1 Introduction
323(1)
10.2 Soft-switching Three-phase Inverter
324(10)
10.2.1 SVM Scheme in Hard-switching Inverter
324(2)
10.2.2 ZVS-SVM Scheme in Soft-switching Inverter
326(1)
10.2.3 Operation Stages and ZVS Condition of Soft-switching Inverter
326(8)
10.2.3.1 Operation Stages Analysis
326(3)
10.2.3.2 ZVS Condition Derivation
329(5)
10.3 Efficiency Comparison of Hard-switching SiC Inverter and Soft-switching SiC Inverter
334(16)
10.3.1 Parameters Design of Soft-switching SiC Inverter
334(10)
10.3.1.1 AC Filter Inductor
335(1)
10.3.1.2 Resonant Parameters
335(3)
10.3.1.3 DC Filter Capacitor
338(1)
10.3.1.4 Clamping Capacitor
338(3)
10.3.1.5 Cores Selection
341(1)
10.3.1.6 Switching Loss Measurement
342(2)
10.3.2 Comparison of Two SiC Inverters
344(4)
10.3.2.1 Loss Distributions
345(2)
10.3.2.2 Efficiency Stiffness
347(1)
10.3.2.3 Passive Components Volumes
348(1)
10.3.3 Experimental Verification
348(2)
10.3.3.1 Efficiency Test
348(2)
10.3.3.2 Passive Components Volumes Comparison
350(1)
10.4 Design of Low Stray Inductance Layout in Soft-switching SiC Inverter
350(9)
10.4.1 Oscillation Model
350(3)
10.4.2 Design of Low Stray Inductance 7-in-1 SiC Power Module
353(3)
10.4.3 7-in-1 SiC Power Module Prototype and Testing Results
356(3)
10.4.3.1 Stray Inductance Measurement
356(2)
10.4.3.2 Voltage Stress Comparison
358(1)
10.5 Design of Low Loss Resonant Inductor in Soft-switching SiC Inverter
359(9)
10.5.1 Impact of Distributed Air Gap
359(1)
10.5.2 Optimal Flux Density Investigation
360(1)
10.5.3 Optimal Winding Foil Thickness Investigation
360(4)
10.5.4 Resonant Inductor Prototypes and Loss Measurement
364(4)
10.6 Summary
368(1)
References
368(3)
11 Soft-switching SiC Single-phase Grid Inverter with Active Power Decoupling
371(30)
11.1 Introduction
371(5)
11.1.1 Modulation Methods for Single-phase Inverter
371(1)
11.1.2 APD in Single-phase Grid Inverter
372(4)
11.2 Operation Principle
376(9)
11.2.1 Topology and Switching Scheme
376(3)
11.2.2 Stage Analysis
379(6)
11.3 Circuit Analysis
385(5)
11.3.1 Resonant Stages Analysis
385(2)
11.3.2 Steady-state Analysis
387(1)
11.3.3 Soft-switching Condition
388(1)
11.3.4 Short Circuit Current
388(2)
11.4 Design Prototype
390(8)
11.4.1 Rated Parameters of a 1.5-kW Inverter
390(1)
11.4.2 Parameter Design
391(2)
11.4.3 Experimental Platform and Testing Results
393(5)
11.5 Summary
398(1)
References
398(3)
12 Soft-switching SiC Three-phase Four-wire Back-to-back Converter
401(40)
12.1 Introduction
401(1)
12.2 Operation Principle
402(12)
12.2.1 Commutations Analysis
403(1)
12.2.2 Operation Scheme
403(2)
12.2.3 Stage Analysis
405(9)
12.3 Circuit Analysis
414(9)
12.3.1 Resonant Stage Analysis
414(3)
12.3.2 Steady State Analysis
417(5)
12.3.3 ZVS Condition
422(1)
12.4 Design Prototype
423(17)
12.4.1 Parameters Design
423(4)
12.4.2 Loss Analysis
427(4)
12.4.3 Experimental Results
431(9)
12.5 Summary
440(1)
References
440(1)
Appendix 441(28)
A.1 Basic of SVM
441(5)
A.2 Switching Patterns of SVM 12.
446(2)
A.3 Switching Patterns of ZVS-SVM
448(2)
A.4 Inverter Loss Models
450(9)
A.4.1 Loss Model of Hard-switching Three-phase Grid Inverter
450(6)
A.4.1.1 Conducting Loss
450(3)
A.4.1.2 Switching Loss
453(1)
A.4.1.3 AC Filter Inductor Loss and Volume Estimations
454(2)
A.4.2 Loss Model of Soft-switching Three-phase Grid Inverter
456(3)
A.4.2.1 Loss in Main Switches
456(2)
A.4.2.2 Loss in Auxiliary Switch
458(1)
A.4.2.3 Loss and Volume of Filter Inductor and Resonant Inductor
459(1)
A.5 AC Filter Inductance Calculation
459(3)
A.6 DC Filter Capacitance Calculation
462(7)
Index 469
Dehong Xu, PhD, is Full Professor in College of Electrical Engineering at Zhejiang University.

Rui Li, PhD, is Full Professor in the Department of Electrical Engineering, School of Electronics, Information and Electrical Engineering at Shanghai Jiao Tong University.

Ning He, PhD, is Firmware Design Principal Engineer in Delta Electronics (Shanghai) Co., Ltd.

Jinyi Deng is a PhD student in Power Electronics in the College of Electrical Engineering at Zhejiang University.

Yuying Wu is a PhD student in Power Electronics in the College of Electrical Engineering at Zhejiang University.