Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals.  

The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based measurement systems; familiarity with the hardware necessary to acquire and store signals; an appreciation for the key issue of long-term preservation of signals; and a full grasp of the often neglected issue of uncertainty in acoustical measurements. Pedagogical features include in-text worked-out examples, end-of-chapter problems, a glossary of metrology terms, and extensive appendices covering statistics, proofs, additional examples, file formats, and underlying theory.

Arvustused

This is essentially a mid-level book as far as theory is concerned and a practical guide for everyday work in the field. this book should be recommended to students and especially practitioners with scarce access to expensive tools. (Computing Reviews, November, 2017)

1 Introduction
1(42)
1.1 Acoustical Measurements
1(1)
1.2 Instantaneous and Effective (RMS) Value
2(2)
1.3 Sound Pressure Level
4(1)
1.4 Equivalent Level
4(4)
1.4.1 Stabilization Time for Leq
6(2)
1.5 Weighted Levels
8(5)
1.6 Exceedance Levels
13(4)
1.6.1 Stabilization Time for Exceedance Levels
14(3)
1.7 Spectrum Analysis
17(26)
1.7.1 Constant Percentage Spectrum Analyzer
18(4)
1.7.2 Line Spectrum Analyzer
22(1)
1.7.3 Line Spectrum and Time-Frequency Uncertainty
23(1)
1.7.4 Line Spectrum and Power Spectral Density
24(3)
1.7.5 Band Filters
27(4)
1.7.6 Transient Response of Band Filters
31(4)
1.7.7 Parseval's Identity
35(2)
1.7.8 Effect of Spectrum Tolerance on Parseval's Identity
37(2)
1.7.9 Weighted Levels Computed from One-Third Octave Bands
39(2)
References
41(2)
2 Uncertainty
43(34)
2.1 Introduction
43(1)
2.2 Resolution, Precision, Accuracy
44(1)
2.3 Measurement Method and Procedure
45(1)
2.3.1 Direct and Indirect Measurement Methods
46(1)
2.4 Measurement Model
46(3)
2.5 Uncertainty
49(6)
2.5.1 Type A Uncertainty
50(1)
2.5.2 Type B Uncertainty
51(1)
2.5.3 Expanded Uncertainty
52(1)
2.5.4 Combined Standard Uncertainty
53(2)
2.6 Examples
55(6)
2.6.1 Relationship Between Uncertainties in Level and Pressure
55(1)
2.6.2 Uncertainty in the Correction of Environmental Conditions
56(1)
2.6.3 Uncertainty in the Calculation of the Equivalent Level
56(2)
2.6.4 Uncertainty in A-Weighting Computed from Octave Spectrum
58(2)
2.6.5 Uncertainty in the Measurement of Sound Transmission Loss
60(1)
2.7 Uncertainty and Resolution
61(1)
2.8 Uncertainty and Systematic Error
62(10)
2.8.1 Additive Systematic Error
62(2)
2.8.2 Multiplicative Systematic Error
64(4)
2.8.3 Nonlinear Systematic Error
68(3)
2.8.4 Uncorrected Systematic Errors
71(1)
2.9 Chain Calculation of Uncertainty
72(5)
References
75(2)
3 Digital Recording
77(90)
3.1 Introduction
77(1)
3.2 Digital Audio
77(1)
3.3 Sampling
78(5)
3.4 Digitization
83(1)
3.5 Signal-to-Noise Ratio
84(1)
3.6 Low-Level Distortion
85(1)
3.7 Dither
86(3)
3.8 Jitter
89(2)
3.9 D/A and A/D Conversion
91(3)
3.9.1 Digital/Analog Conversion
91(1)
3.9.2 Analog/Digital Conversion
92(2)
3.10 Pulse Code Modulation (PCM)
94(1)
3.11 Differential Pulse Code Modulation (DPCM)
95(3)
3.12 Delta Modulation (DM)
98(2)
3.13 Sigma-Delta Modulation (SDM)
100(4)
3.14 Digital Recording Devices
104(2)
3.15 Sound File Formats
106(17)
3.15.1 WAV Format
108(7)
3.15.2 FLAC Format
115(8)
3.16 Project Files
123(9)
3.16.1 AUP Format
124(6)
3.16.2 AU Format
130(1)
3.16.3 AUF Format
131(1)
3.16.4 External Access to Audio Data
131(1)
3.17 Recording and Storage Media
132(20)
3.17.1 Hard Disk
132(4)
3.17.2 Flash Memory
136(2)
3.17.3 Optical Discs
138(14)
3.17.4 Digital Audio Tape (DAT)
152(1)
3.18 File Systems
152(7)
3.18.1 FAT 32
153(2)
3.18.2 NTFS
155(2)
3.18.3 EXT4
157(1)
3.18.4 HFS+
158(1)
3.18.5 UDF
159(1)
3.19 Long-Term Preservation
159(3)
3.20 Conclusion
162(5)
References
164(3)
4 Digital Audio Editing
167(20)
4.1 Introduction
167(1)
4.2 Audacity
168(19)
4.2.1 Opening an Existing File
169(2)
4.2.2 Recording Sounds
171(1)
4.2.3 Generating Signals
171(1)
4.2.4 Adding New Tracks
172(1)
4.2.5 Saving a Project
172(1)
4.2.6 Selection
173(1)
4.2.7 Labels
174(1)
4.2.8 Selection in the Presence of Labels
175(1)
4.2.9 Calibration Tone
175(3)
4.2.10 FFT Filters
178(3)
4.2.11 Spectrogram and Spectrum Analysis
181(1)
4.2.12 Noise Reduction
182(4)
References
186(1)
5 Transducers
187(24)
5.1 Microphones
187(2)
5.2 Polarization
189(1)
5.3 Preamplifier
190(1)
5.4 Sound Fields
190(2)
5.4.1 Free Field
191(1)
5.4.2 Diffuse Field
191(1)
5.4.3 Pressure Field
191(1)
5.4.4 Stationary Field
191(1)
5.5 Microphones and Sound Fields
192(1)
5.6 Frequency Response
193(3)
5.7 Directional Response Pattern
196(2)
5.8 Noise
198(1)
5.9 Distortion
199(1)
5.10 Micromachined Microphones
200(1)
5.10.1 Frequency Response
201(1)
5.11 Audiometric Earphones
201(5)
5.12 Omnidirectional Sources
206(5)
References
209(2)
6 Digital Signal Processing
211(20)
6.1 Discrete Signals
211(1)
6.2 Discrete Impulse
211(2)
6.3 A Signal as Its Convolution with a Discrete Impulse
213(1)
6.4 Discrete Systems
213(1)
6.5 Finite- and Infinite-Impulse-Response Systems
214(1)
6.6 Difference Equation of a Discrete System
215(2)
6.7 Frequency Response of a Discrete System
217(2)
6.8 z Transform of a Discrete Signal
219(1)
6.9 z Transform of a Difference Equation
220(2)
6.10 z Transform of a Convolution
222(1)
6.11 z Transform and Frequency Response
222(1)
6.12 Solution of a Difference Equation
223(2)
6.13 Poles and Stability of a Discrete System
225(1)
6.14 Inversion of a Rational z Transform
225(1)
6.15 Continuous- to Discrete-System Bilinear Conversion
226(5)
Reference
230(1)
7 Basic Algorithms for Acoustical Measurements
231(14)
7.1 Introduction
231(1)
7.2 Opening a wav File
232(1)
7.3 Energy Average and Equivalent Level
232(1)
7.4 Calibration
233(1)
7.5 Energy Envelope
234(2)
7.6 A Weighting
236(3)
7.7 Statistical Analysis
239(6)
References
243(2)
8 Spectrum Analysis
245(52)
8.1 Introduction
245(1)
8.2 Spectrum Analysis Paradigms
245(1)
8.3 Digital Filters
246(5)
8.4 Discrete Fourier Transform (DFT)
251(2)
8.5 Fast Fourier Transform (FFT)
253(1)
8.6 Spectrum Analysis with the FFT
254(14)
8.6.1 Line Spectrum Analysis
255(1)
8.6.2 The Problem of Frequencies Close to Fs/2
256(2)
8.6.3 The Problem of Subharmonic Frequencies
258(1)
8.6.4 Precise Detection of Pure Tones
259(1)
8.6.5 Windows
260(4)
8.6.6 FFT Band Spectrum Analysis
264(3)
8.6.7 Spectral Density and Spectrum Averaging
267(1)
8.7 FFT Filters
268(5)
8.8 Some Applications of the FFT
273(7)
8.8.1 Determination of Tonality
273(2)
8.8.2 FFT Convolution
275(3)
8.8.3 FFT Correlation
278(1)
8.8.4 Critical Band Filters
279(1)
8.8.5 Determination of Transfer Functions
280(1)
8.9 Contrasting Algorithms for Use in Measurements
280(11)
8.9.1 International Standard IEC 61260
281(1)
8.9.2 Contrasting Algorithms
282(1)
8.9.3 Procedure
283(1)
8.9.4 Sound Card Calibration
283(1)
8.9.5 Verification of the Analyzer Response
284(1)
8.9.6 Contrasting Different Algorithms
285(1)
8.9.7 Results
286(5)
8.10 Conclusion
291(6)
References
294(3)
9 Testing Digital Recorders
297(12)
9.1 Introduction
297(1)
9.2 Specifications of the Digital Recorder
298(1)
9.3 Tests
298(11)
9.3.1 Frequency Response
298(2)
9.3.2 Noise
300(1)
9.3.3 Linearity
301(1)
9.3.4 Transient Response
302(1)
9.3.5 Uncertainty
303(1)
9.3.6 Conclusion
304(1)
References
305(2)
Further Readings
307(2)
Appendix A Glossary and Definitions on Metrology 309(12)
Appendix B Fundamentals of Statistics 321
Federico Miyara graduated as an Electronic Engineer from the Universidad Nacional de Rosario (UNR) in 1984. He then joined the faculty of his alma mater, first as an assistant teacher and later as an associate professor. There, he founded the Laboratory of Acoustics and Electroacoustics and has served as its director for more than 20 years. Over the years, he has led several postgraduate courses at the UNR, as well as at other universities in Argentina, Spain, Chile, Uruguay and Bolivia. He has conducted research in the field of noise assessment, particularly in noise mapping and in noise at the work place, as well as in psychoacoustics, musical acoustics, and architectural acoustics. His publications include four previous books on the subject of Acoustics, including the original Spanish-language version of this book. As a pianist and composer, the author attributes his initial interest in Acoustics to his curiosity about the science of music.