Muutke küpsiste eelistusi

E-raamat: Software Sizing, Estimation, and Risk Management: When Performance is Measured Performance Improves

  • Formaat: 576 pages
  • Ilmumisaeg: 15-Mar-2006
  • Kirjastus: Auerbach
  • Keel: eng
  • ISBN-13: 9781420013122
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 576 pages
  • Ilmumisaeg: 15-Mar-2006
  • Kirjastus: Auerbach
  • Keel: eng
  • ISBN-13: 9781420013122
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

To achieve consistent software project success under the pressures of today's software development environment, software organizations require achievable plans including viable estimates of schedule, resources, and risks. To estimate realistically, you must understand how to apply sound estimation processes, tools, and data.

Software Sizing, Estimation, and Risk Management: When Performance is Measured Performance Improves is a practical, hands-on discussion of the software estimation, planning, and control process. This includes critical factors that impact estimates, methods for selecting and applying appropriate measures to projects, proper software sizing, and processes to identify and manage risk. The authors use their expertise in sizing, estimation, process engineering, and risk management to clearly demonstrate problems that make many estimates crumble and solutions that provide successful project plans. The book offers insight not available anywhere else, enabling you to recognize and avoid downstream impacts resulting from poor estimates.
Foreword: Under the Tip of the Estimation Iceberg by Barry Boehm xvii
Foreword by Donald J. Reifer xix
Preface xxi
How This Book Came about from a Galorath Viewpoint
xxi
Audience
xxiii
Structure of the Book
xxv
What Can You Expect from the Book?
xxv
Acknowledgments xxvii
The Authors xxix
1 The Problem
1(24)
Introduction
1(3)
Focus of the Book
4(1)
Why Software Projects Fail
4(3)
Why Software Projects Fail: Problems with Estimation
7(2)
Why Software Projects Fail: Size Estimates
9(4)
Why Estimates Fail
13(1)
Historical Data
14(2)
Overly Optimistic Leadership and Management
16(2)
Failure to Use Estimate
16(2)
Failure to Keep Estimate Current
18(1)
Role of Risk Management in Estimating
18(2)
The Solution: Software Estimation — Ten-Step Process
20(1)
Summary
21(1)
Endnotes
21(4)
2 Introduction to Software Estimation Techniques and Estimate Planning
25(32)
Introduction and
Chapter Goals
25(1)
Need for Efficient Software Project Management Metrics
26(2)
Core Metrics Categories
28(2)
Software Project Estimates: Foundations of Software Project Management
30(4)
Software Estimation Concepts
34(1)
Project Estimation Process
35(4)
Step One: Establish Estimate Scope and Purpose
36(2)
Step Two: Establish Technical Baseline, Ground Rules, and Assumptions
38(1)
Step Three: Collect Data
39(1)
Underlying Information
39(6)
Interview with Judy Galorath
45(3)
Software Data Collection Process
48(2)
Software Data Collection Lessons Learned
50(4)
Prioritizing Estimation Effort
54(1)
Summary
54(1)
Endnotes
54(3)
3 Executing the Estimate
57(48)
Introduction and
Chapter Goal
57(1)
Step Four: Software Sizing
57(13)
Predicting Size
58(2)
Size Estimation Approaches
60(1)
Deciding on a Metric
61(3)
When to Use SLOG
63(1)
When to Use Function Points
63(1)
Steps to Estimating Software Size
64(4)
Sizing Step 1: Baseline Definition of the Size Metric You Will Use
65(1)
Sizing Step 2: Define Sizing Objectives
65(1)
Sizing Step 3: Plan Data and Resource Requirements
66(1)
Sizing Step 4: Identify and Evaluate Software Requirements
66(1)
Sizing Step 5: Use Several Independent Techniques and Sources
66(2)
Sizing Step 6: Tracking
68(1)
Sizing Databases
68(1)
Legacy Software Rework
69(1)
Sizing Number of Functions to Be Learned, Used, and Integrated for COTS
70(1)
Step Five: Prepare Baseline Estimate
70(29)
Software Productivity Laws
72(6)
Bottom-Up Estimating
78(1)
Software Cost Models
78(8)
Organizing the Estimating Process
86(1)
Delphi and Wideband Delphi
87(2)
Activity-Based Estimates
89(10)
Step Six: Quantify Risks and Risk Analysis
99(3)
Cost Estimation Risks
99(3)
Summary
102(1)
Endnotes
102(3)
4 Planning and Controlling the Project via the Estimate
105(44)
Introduction
105(1)
Step Seven: Estimate Validation and Review
105(12)
Estimate Review Process
107(1)
Estimate Review Activities
108(1)
Cost per Unit of Code Developed
109(4)
Magic Bullets (Otherwise Known as Technical Leaps)
109(1)
Unrealistic Schedules
110(1)
Inaccurate Sizing
110(1)
Complexity versus Risk
111(1)
Careful Evaluation of Preexisting and COTS Software
112(1)
Off-the-Shelf Integration
112(1)
Function Point Counting Checklist
113(2)
Sanity Counts
113(1)
Lack of Convergence
113(1)
Double Counting
113(1)
Sample and Statistical Concerns
114(1)
Probability Level
114(1)
Falsely Bounded Risk
114(1)
Costs
115(1)
Are Staff Costs Fully Burdened?
115(1)
How Many Hours Are in a Staff Month?
115(1)
Staff and Effort Accounting
115(1)
Does Overtime Count?
115(1)
What Level of Management Participates?
115(1)
How Efficiently Is Staff Allocated?
116(1)
Are Experience Levels Honestly Rated?
116(1)
Schedules
116(12)
What Is the Proportion of Daily Billable Work Done?
116(1)
Will Development Have Lags?
116(1)
If Several Software Elements Are Developed, How Are They Scheduled?
116(1)
Is It More Important to Save Time or Staff Cost?
117(1)
Sanity Check
117(1)
Estimate Process Questionnaire
117(11)
Step Eight: Generate Project Plan
128(15)
Action Items by Project Phase
129(4)
Determining Costs from Effort Estimates
133(1)
Estimating Personnel Mix
133(1)
Labor Proportions
134(1)
Other Costs
134(4)
Travel Costs
134(1)
Personnel Costs
134(3)
Depreciation Costs
137(1)
Training Costs
137(1)
Independent Verification and Validation or Independent Quality Assurance
137(1)
Inflation
137(1)
Overhead
138(1)
Estimating Schedule in Calendar Months
138(1)
Effect of Management and Process on Estimates
138(1)
Impact of Software Project Management on Software Development Plan
138(3)
Effect of Software Processes on Software Development Plan
141(2)
Step Nine: Document Estimate and Lessons Learned
143(3)
Conducting Lessons-Learned Review
144(1)
Cause Segment
145(1)
Effects Segment
145(1)
Modeling Improvement Segment
146(1)
Step Ten: Track Project throughout Development
146(1)
Refining Estimates throughout Project
146(1)
Summary
147(1)
Endnotes
148(1)
5 Source lines of Code
149(38)
Introduction
149(1)
Terminology and Definitions
150(2)
SLOC Realities and Risks
152(1)
Using SLOC
153(2)
Logical SLOC Counting Details
155(1)
Logical SLOC Detailed Definitions
155(12)
Executable Statements
155(3)
Data Declaration Statements
158(1)
Compiler Directives
158(3)
Line Counting Example
161(1)
Estimation versus Counting SLOC
162(1)
SLOC Considerations for Sizing Databases
162(1)
Language Impact on Size Conversion
163(1)
Effective Size
164(1)
Productivity Based on Effective Size
164(1)
Accounting for SLOG Growth
164(2)
Estimating Size Growth Conclusions
166(1)
Finding Automated Code Counters for Existing Systems
167(2)
Pros and Cons of SLOC
169(2)
Arguments against Use of Lines of Code as Sizing Metric
170(1)
Risks Resulting from Using SLOC to Estimate
170(1)
Risk Management and Control of SLOC Estimates
171(1)
Summary
171(1)
SEI Checklist
172(4)
SEI Definition Checklist for Source Statement Counts
172(4)
Codes for Various Programming Languages
176(9)
Endnotes
185(2)
6 Function-Based. Sizing
187(66)
Introduction
187(1)
Origins and History of Functional Metrics
188(2)
ISO Involvement
190(1)
International Function Point User Group Counting Standards: Basic Process Definition
191(1)
IFPUG Definitions
192(1)
IFPUG Steps
192(32)
Step 1: Determine Type of Function Point Count
192(2)
Step 2: Determine Application Boundary
194(1)
Step 3: Identify Functional Categories
195(14)
External Input (EI)
196(3)
External Output (EO)
199(2)
External Inquiry (EQ)
201(3)
External Interface File (EIF)
204(2)
Internal Logical File (ILF)
206(3)
Step 4: Count Data Functions (ILFs and EIFs)
209(1)
Step 5: Count Transactional Functions (EIs, EOs, and EQs)
210(1)
Step 6: Evaluate Value Adjustment Factors
211(11)
Step 7: Compute Unadjusted and Adjusted Function Point Counts
222(2)
SEER-Function-Based Sizing (SEER-FBS)
224(6)
SEER-FBS External Inputs (EN)
225(1)
SEER-FBS Subcategories for External Inputs
226(1)
Rating Complexity for External Inputs
226(1)
SEER-FBS External Outputs (EOs)
226(1)
SEER-FBS Subcategories for External Outputs
227(1)
Rating Complexity for External Outputs
227(1)
SEER-FBS External Inquiries (EQs)
227(1)
Rating Complexity for External Inquiries
228(1)
SEER-FBS Subcategories for External Inquiries
228(1)
SEER-FBS External Interface Files (EIFs)
228(1)
SEER-FBS Subcategories for External Interface Files
228(1)
Rating Complexity for External Interface Files
229(1)
SEER-FBS Internal Logical Files (ILFs)
229(1)
SEER-FBS Subcategories for Internal Logical Files
229(1)
Rating Complexity for Internal Logical Files
229(1)
SEER-FBS Extended Category: Internal Functions
230(1)
Effective Function Points
230(6)
Using Function Points
233(3)
Early Function Point Counting (Estimating)
236(1)
Analysis of Function Point Rules in Tree-Based Framework
236(4)
Description of Tree and Results
237(1)
Backfiring
237(2)
Possible Errors in Function Point Counting
239(1)
Pros and Cons of Function Points
240(2)
Pros of Function Points
240(1)
Cons of Function Points
241(1)
When to Use Function Points
242(1)
Function Point Risk Management
242(1)
Function Point Counting Risk Checklist
243(1)
Summary
243(8)
Endnotes
251(2)
7 Object-Oriented Sizing: Object and Use-Case Sizing
253(22)
Introduction
253(1)
Background of Object-Oriented Design
254(1)
Overview of Object-Oriented Techniques
255(8)
Object Points
256(1)
Performing Object Point Counts
256(1)
Object Point Definitions
256(6)
Classes
256(3)
Services (Methods)
259(3)
Predictive Object Points
262(1)
Development of Use-Case Metric
262(1)
Calculation of Unadjusted Use-Case Points
263(4)
Adjustment of Use-Case Point Count (Optional)
265(1)
Concluding Comments about Use-Case Points
265(1)
Sizing Web Development
265(2)
Risk Associated with Object-Oriented Projects
267(5)
Summary
272(1)
Endnotes
273(2)
8 Software Reuse and Commercial Off-the-Shelf Software
275(28)
Introduction
275(2)
Reusable Software
277(2)
Integrating Commercial Off-the-Shelf Software
279(5)
Fundamental Differences between COTS Software and Custom Development
282(1)
Items Not Estimated as COTS
283(1)
Weighing Use of COTS
284(1)
Case Studies: Real-World Experiences with COTS
284(1)
Case 1: Components Had Critical Defects and Were Modified by Developer
284(1)
Case 2: Powerful (and Defect-Ridden) COTS Component
285(1)
Case 3: Application Integrated (Loosely Coupled) without Problems
285(1)
Evaluating and Estimating COTS
285(2)
Three Components of COTS Integration
286(1)
Estimating COTS Integration
287(7)
Using Function Points and Estimating Model Lacking COTS-Specific Capability
287(1)
Integration of Stand-Alone COTS Software
288(1)
Stand-Alone COTS Software with Significant Configuration
288(1)
Using SEER-SEM Cost Drivers to Estimate COTS
288(5)
Object Sizing
291(1)
Feature Sizing
291(2)
Rules of Thumb for COTS Integration
293(1)
Experience with COTS Product
293(1)
Scope of COTS
293(1)
Evaluation and Selection of COTS Products
294(1)
COTS Risks
294(3)
Risk Reduction
296(1)
Risks Associated with Reuse and COTS
297(1)
Summary
297(4)
Endnotes
301(2)
9 Performing to Estimate: Managing and Monitoring Development
303(36)
Introduction
303(1)
Metric Reporting
304(5)
Metrics Sets
309(1)
Productivity
309(1)
Productivity Monitoring
309(9)
Using Earned Value Management
318(19)
When Reality Sets In
323(1)
"Shoestring" Project Environments
324(1)
Process Performance
325(1)
Technology Solutions
326(1)
Understanding Process Selection Constraints
327(3)
Product Quality and Stability
330(1)
Defects
331(2)
Code Inspections
333(2)
Staffing Levels
335(1)
Team Performance
335(2)
Summary
337(1)
Endnotes
337(2)
10 Risk Management Process 339(58)
Introduction
339(1)
History of Risk Management
340(5)
Cultural Obstacles to Managing Risk
343(2)
Risks versus Problems
345(2)
Risk Management Success Factors
347(2)
Essential Risk Management Definitions
349(1)
Introduction to Risk Management Concepts
350(9)
Computing a Risk Index
352(4)
Risk Management Processes
356(3)
Seven Steps to Risk Management
359(28)
Step 1: Establish Risk Policy, Obtain Commitment to Manage Risk, and Develop Plan
359(9)
Risk Management Planning
360(2)
"How-To" Procedures: Essential Planning Elements
362(6)
Step 2: Designate Risk Officer
368(4)
Risk Officer Case Study
371(1)
Relationship of Risk Officer and Management
371(1)
Step 3: Identify Risks
372(9)
Risk Identification Techniques
374(3)
Risk Characterization
377(1)
Potential Risk Identification Activities during Estimation
378(3)
Step 4: Risk Analysis
381(2)
Use of Metrics
382(1)
Use of Quantitative Triggers
382(1)
Step 5: Prioritize Risks
383(1)
Step 6: Report Risks
384(2)
Reporting Problems versus Risks
384(1)
Risk Reporting by Exposure
385(1)
Step 7: Establish Risk Reserve
386(1)
Basic Risk Management Rules
387(1)
Risk Analysis Viewed as Uncertainty Analysis
387(6)
Establishing Risk Reserve Using Commercial Grade Models
388(1)
Risk Management Dealing with Cost Uncertainty
388(1)
Risk Analysis at the Work Element Level
389(2)
Pert Distribution Characteristics
390(1)
Probability and Intuition
391(1)
Probability-Based Risk Outputs
392(1)
Project and Roll-Up Risk Calculation
392(1)
Summary
393(2)
Endnotes
395(2)
11 Applying SEER-SEM to Estimation Processes 397(102)
Introduction to SEER-SEM Project Manager Edition Tools
398(3)
Details and Uses
401(1)
Summary Input and Output Definitions
402(1)
SEER-SEM Concept
403(2)
SEER-SEM Sizing
405(1)
SEER-SEM Programmatic Architecture
406(1)
Open Databases
406(1)
Communicating with SEER-SEM via Microsoft COM
407(1)
Server Mode
407(1)
Applying SEER-SEM Project Manager Edition to the Estimation Process
407(1)
Steps 1 through 3: Establish Estimate Scope and Purpose; Establish Technical Baseline, Ground Rules, and Assumptions; and Collect Data
407(3)
SEER-SEM Software Sizing (Step 4)
409(1)
Manual Sizing
410(1)
Automated Sizing with SEER-AccuScope
410(2)
Choosing Knowledge Bases for Reuse Estimation
412(8)
Using SEER Function-Based Sizing for Size Estimates
420(1)
Using Number of Programs Included in Size
420(16)
SEER-SEM Estimation Process (Step 5)
421(2)
SEER-SEM Estimation Process Step 5b: Select Knowledge Bases
423(1)
SEER-SEM Estimation Process Step 5c: Specify Project Constraints
424(1)
SEER-SEM Estimation Process Step 5d: Adjust Individual Parameters
425(1)
SEER-SEM Estimation Process Step 6: Quantify Risks and Risk Analysis
426(3)
Distributions
427(1)
Probability Distribution of Output Ranges
428(1)
Risk Factor Analysis with Sensitivity Charts
429(2)
Ranked Risks with Top Ten Cost Drivers Chart
431(1)
Precise Estimate Distributions through Risk Analysis Report
431(1)
SEER-SEM Estimation Process Step 7: Review, Verify, and Validate Estimate
432(2)
SEER-SEM Estimation Process Step 8: Generate Project Plan
434(1)
SEER-SEM Estimation Process Step 9: Document Estimate and Lessons Learned
435(1)
Custom Knowledge Bases and Calibration
435(1)
Calibration (Part of Lessons Learned)
435(1)
Constructing Calibration Factors
436(1)
SEER-SEM Estimation Process Step 10: Track Project
436(1)
SEER-SEM Internals
436(12)
SEER-SEM Basic Size Definition
437(1)
SEER-SEM Staff Hour Definition
437(1)
SEER-SEM Mathematical Model Overview
437(8)
Effective Size Mathematics
437(5)
Function-Based Sizing Mathematics
442(1)
Parameters
442(1)
Knowledge Bases
442(1)
Effective Technology Calculation
443(2)
Effort, Schedule, and Staffing Calculations
445(3)
Basic Definitions
445(1)
Basic Effort and Schedule Equations
445(1)
Optimal Effort Calculations
446(1)
Relaxed Schedule Calculations
447(1)
Applying Adjustment Factors
448(1)
SEER-SEM Parameter Definitions
448(48)
Contents
448(1)
Sizing Parameters
449(4)
Technology and Environment Parameters
453(23)
Commercial Off-the-Shelf (COTS) Parameters
476(8)
Other Parameters
484(12)
Summary
496(1)
Endnotes
497(2)
12 SEER-SEM Solutions for Project Management and Control 499(20)
Introduction
499(1)
CMMI Process Areas for Project Management
500(10)
Solution 1: Application of Basic SEER-SEM for Project Management and Control
501(2)
Solution 2: SEER-SEM Client for Microsoft Project
503(1)
Using the Client for Detailed Project Planning
504(2)
Solution 3: SEER-PPMC (Parametric Project Monitoring and Control)
506(4)
Implementing Planning and Control Process with SEER-PPMC
510(2)
Earned Value Metrics and Calculations Used in SEER-PPMC
512(6)
Summary
518(1)
Endnotes
518(1)
Index 519


Galorath, Daniel D.; Evans, Michael W.