Muutke küpsiste eelistusi

E-raamat: Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains

Edited by (University of Nebraska, Lincoln, USA), Edited by (University Western Australia, Crawley)
  • Formaat: 364 pages
  • Ilmumisaeg: 27-Feb-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040082782
  • Formaat - EPUB+DRM
  • Hind: 175,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 364 pages
  • Ilmumisaeg: 27-Feb-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040082782

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A burial environment is a complex and dynamic system. It plays host to an abundance of interdependent chemical, physical, and biological processes, which are greatly influenced by the inclusion of a body and its subsequent decay. However, while taphonomy continues to emerge as a valuable forensic tool, until now most of the attention has been on the cadaver rather than the grave itself. Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains is the first book to concentrate entirely on the telling impact of soil and its components on the postmortem fate of human remains. Examining the basic physicochemical composition of the soil as it relates to forensic science and taphonomy, leading experts from across the world

· Offer an introduction to the nature, distribution, and origin of soil materials in forensic comparisons

· Discuss the action of biological soil components, including invertebrates, fungi, and bacteria

· Address rates and processes of decomposition and time of death estimates

· Detail methods for characterizing and fingerprinting soils

· Provide extensive information on the decomposition of hair

Edited by Mark Tibbett, a soil microbiologist and David Carter, a forensic scientist, this unique resourceprovides an up-to-date overview of fundamental scientific principles and methods used in forensic taphonomy from a soils-based perspective. It provides an understanding of the processes at work, as well as practical methods and advice for those involved with active investigation.

Arvustused

an interesting read and the editors are to be commended for bringing together an overall excellent group of contributors. James Robertson, Forensic and Data Centres, Australian Federal Police, Canberra, Australia, in Australian Journal of Forensic Science, June 2009

Preface vii
Editors ix
Contributors xi
1 Nature, Distribution, and Origin of Soil Materials in the Forensic Comparison of Soils 1
ROBERT W. FITZPATRICK
1.1 Introduction
1
1.2 Nature of Soils Relevant to Forensic Soil Science and Human Decomposition Processes
3
1.3 Brief History of Forensic Soil Science
4
1.4 Soil Origin, Classification, and Distribution
6
1.5 Spatial Scale and Pedogenic Processes
10
1.6 Relationship between Soil Type and Scale: Regional and Global
11
1.7 Most Favored Techniques Used by Forensic Soil Scientists
11
1.7.1 Theory of Making Comparisons between Soil Samples
12
1.7.2 Approaches and Methods for Making Comparisons between Soil Samples
12
1.7.2.1 Soil Color
13
1.7.2.2 Soil Consistence
14
1.7.2.3 Soil Texture
15
1.7.2.4 Soil Structure
20
1.7.2.5 Segregations and Coarse Fragments
20
1.8 Petrographic and Other Advanced Techniques and Instruments
21
1.9 Conclusions
25
References
25
2 Cadaver Decomposition and Soil: Processes 29
DAVID O. CARTER AND MARK TIBBETT
2.1 Introduction
29
2.2 Cadavers: Composition and Decomposition
31
2.3 The Formation of a Cadaver Decomposition Island
33
2.3.1 Fresh and Bloated Cadavers
35
2.3.2 Active Decay
35
2.3.3 Advanced Decay, Dry, and Remains
36
2.4 Factors Influencing Cadaver Decomposition
38
2.4.1 Aboveground Decomposition
38
2.4.1.1 Temperature
38
2.4.1.2 Moisture
39
2.4.1.3 Trauma
40
2.4.1.4 Associated Materials
40
2.4.2 Belowground Decomposition
40
2.4.2.1 Temperature
40
2.4.2.2 Moisture and Soil Texture
41
2.4.2.3 Soil pH
42
2.4.2.4 Associated Materials
43
2.4.2.5 Decomposer Adaptation
43
2.5 Concluding Remarks
44
References
45
3 The Role of Soil Organisms in Terrestrial Decomposition 53
DAVID W. HOPKINS
3.1 Introduction
53
3.2 Decomposition and Turnover
54
3.3 Factors Affecting Decomposition
55
3.3.1 Resource Quality
56
3.3.2 Environmental Factors
57
3.3.3 Presence and Activity of Organisms
61
3.4 Can Ecological Principles Be Applied to Forensic Investigations?
62
References
64
4 Soil Fungi Associated with Graves and Latrines: Toward a Forensic Mycology 67
NAOHIKO SAGARA, TAKASHI YAMANAKA, AND MARK TIBBETT
4.1 Introduction
68
4.2 Ammonia Fungi (AF)
69
4.2.1 Experimental Grouping of Fungi
69
4.2.2 Fungal Succession and Mycorrhizal Relations
72
4.2.3 Environmental Conditions
74
4.2.3.1 Initial Conditions
74
4.2.3.2 Changes in the Soil
74
4.2.3.3 Responses of Other Organisms
75
4.3 Postputrefaction Fungi (PPF) and AF
76
4.3.1 Fungal Growth Following Cadaver Decomposition on the Ground
76
4.3.2 Fungal Growth Following Cadaver Decomposition Belowground
78
4.3.3 Fungal Growth Following Excreta Decomposition on the Ground
80
4.3.4 Fungal Growth Following Excreta Decomposition Belowground
80
4.3.5 Habitat-Cleaning Symbiosis
82
4.4 Physiology of the AF and PPF
84
4.4.1 Spore Germination
84
4.4.2 Vegetative Growth
84
4.4.2.1 Nitrogen Utilization
84
4.4.2.2 Hydrogen Ion Concentration
86
4.4.2.3 Enzymatic Activity
87
4.4.3 Formation of Reproductive Structures
87
4.4.4 Physiology and Succession
89
4.5 Possibilities for Forensic Application
90
4.5.1 Human Behavior or Activities May Be Evidenced by Fungal Growth
90
4.5.2 Initial Conditions and the Postdeposition Interval May Be Assessed
90
4.5.3 Simulation Experiments
91
4.5.4 Limitations
93
Acknowledgments
94
References
94
Appendix 4.1
99
Appendix 4.2
102
5 The Role of Invertebrates in Terrestrial Decomposition: Forensic Applications 109
IAN R. DADOUR AND MICHELLE L. HARVEY
5.1 Introduction
109
5.2 The Invertebrates
110
5.3 Forensic Entomology
111
5.3.1 Succession
111
5.3.2 Current Research
112
5.4 The Soil-Corpse Interface
113
5.4.1 Class Arachnida
114
5.4.1.1 Mites (Acari)
114
5.4.1.2 Spiders (Araneae)
115
5.4.1.3 Millipedes
115
5.4.2 Class Insecta
115
5.4.2.1 Springtails (Collembola)
115
5.4.2.2 Silverfish (Thysanura)
116
5.4.2.3 Cockroaches (Blattodea)
116
5.4.2.4 Ants (Hymenoptera)
116
5.4.2.5 Earwigs (Dermaptera)
116
5.4.2.6 Flies (Diptera)
116
5.4.2.7 Beetles (Coleoptera)
117
5.5 Deeper Down: Invertebrates on Buried Bodies
118
5.6 Conclusions
120
References
120
6 The Decomposition of Hair in the Buried Body Environment 123
ANDREW S. WILSON
6.1 Introduction
123
6.2 The Structure, Growth, and Function of Hair
125
6.3 Weathering, Contaminants, and Color Change to Hair Fibers
128
6.4 Structural Alteration to the Hair Fiber
130
6.5 Keratinophilic Fungi—Their Geographic Distribution and Ecological Factors Influencing Keratinolytic Activity
131
6.6 The Mechanism of Microbial Degradation of Hair Keratin
133
6.7 Histological Alteration to the Hair Shaft
134
6.8 Hair in Association with a Buried Body
137
6.9 Summary and Appropriate Measures for Safeguarding Evidence
139
References
140
7 The Decomposition of Materials Associated with Buried Cadavers 153
ROBERT C. JANAWAY
7.1 Introduction
154
7.2 Textile Materials
158
7.2.1 Natural Protein Fibers: Wool and Silk
158
7.2.2 Natural Cellulose Fibers: Cotton
160
7.2.3 Regenerated Cellulose: Viscose and Viscose Rayon
160
7.2.4 Synthetic Fibers: Nylon, Polyesters, Acrylics, Elastane
161
7.3 Soil as a Burial Environment
163
7.3.1 Agents of Decomposition
164
7.3.2 Degradation of the Body and Its Effect on Associated Materials
166
7.4 Decomposition of Textiles and Leather
166
7.4.1 Assessment of Textile Deterioration
167
7.4.2 Degradation of Textiles and Clothing
168
7.4.3 Degradation of Natural Fibers
169
7.4.4 Degradation of Synthetic Fibers
170
7.4.5 Degradation of Leather
170
7.4.6 Casework Examples
172
7.4.6.1 Case Study: Duvet Cover in Woods
172
7.4.6.2 Case Study: Woman Buried in Pantyhose
174
7.4.6.3 Case Study: Differential Decay of Clothing on a Skeletonized Body
174
7.5 Corrosion of Metals
175
7.5.1 Dry Corrosion
176
7.5.2 Aqueous Corrosion
176
7.5.3 Metal-Preserved Organics
178
7.5.4 Casework Examples
179
7.5.4.1 Case Study: The Mummified Body of a Woman
179
7.6 Textile Degradation Experiments
180
7.6.1 Experiments in Forensic Taphonomy
180
7.6.2 Blue Denim Textiles and Metal Zippers, Rivets, and Fasteners
181
7.6.3 The Effect of Cadaveric Decomposition on Differential Degradation of Textile Materials: Bradford Pig Experiments
184
7.7 Summary and Conclusions
190
References
190
Appendices: Review of Clothing Based on Current U.K. Experience
195
Appendix A. Men's Clothes
196
Appendix B. Women's Clothes
197
Appendix C. Household Fabrics
199
8 Decomposition Chemistry in a Burial Environment 203
SHARI L. FORBES
8.1 Introduction
203
8.2 The Chemical Process of Decomposition
205
8.2.1 Decomposition Products of Protein
205
8.2.2 Decomposition Products of Carbohydrates
208
8.2.3 Decomposition Products of Lipids
208
8.2.3.1 Adipocere
210
8.3 Liquefaction and Skeletonization
213
8.4 Rate of Decomposition of Buried Bodies
215
8.5 Conclusion
216
References
217
9 Potential Determinants of Postmortem and Postburial Interval of Buried Remains 225
SHARI L. FORBES
9.1 Introduction
225
9.2 The Body as a PMI Determinant
227
9.2.1 Forensic Entomology
228
9.2.1.1 Forensic Entomology and Buried Remains
229
9.2.2 Forensic Anthropology
231
9.2.2.1 Morphological, Chemical, and Immunological Studies
232
9.2.2.2 Radioisotope Studies
234
9.2.3 Forensic Odontology
236
9.2.3.1 Postmortem Tooth Loss as an Indicator of PMI
236
9.3 The Burial Environment as a PBI Determinant
237
9.3.1 Forensic Botany
238
9.3.2 Forensic Palynology
240
9.3.3 Forensic Taphonomy
240
9.4 Conclusion
242
References
243
10 Principles and Methodologies of Measuring Microbial Activity and Biomass in Soil 247
PHIL C. BROOKES
10.1 Introduction
248
10.2 Measuring Microbial Biomass and Activity
250
10.2.1 Soil Collection and Preparation
250
10.2.2 Soil Dry Matter Content and Water-Holding Capacity
253
10.2.2.1 Soil Dry Matter Content
253
10.2.2.2 Water-Holding Capacity
253
10.2.3 Measuring the Soil Microbial Biomass
253
10.2.3.1 Direct Microscopic Counting
253
10.2.3.2 FI Method
254
10.2.3.3 FE Method
254
10.2.4 Measuring Microbial Biomass C by Fumigation Extraction
255
10.2.4.1 Reagents and Experimental Procedure
255
10.2.4.2 Analysis of Soil Extracts
256
10.2.4.3 Automated Analysis of Organic C
257
10.2.5 Measuring Microbial Biomass N by Fumigation Extraction
258
10.2.5.1 Reagents and Experimental Procedure
258
10.2.6 Measuring Microbial Biomass Ninhydrin-N by FE
258
10.2.6.1 Reagents and Experimental Procedure
259
10.2.7 Measuring Microbial Biomass P
260
10.2.7.1 Reagents for Extraction
260
10.2.7.2 Soil Extraction
260
10.2.7.3 Preparation of Murphy-Riley Colorimetric Reagent
261
10.2.7.4 Analytical Procedure
261
10.2.8 Measuring Microbial Adenosine 5'-triphosphate
262
10.2.8.1 Preparation of Stock ATP Solution
262
10.2.8.2 Preparation of ATP Extraction Reagents
263
10.2.8.3 ATP Extraction
263
10.2.8.4 Measurement of ATP (Firefly Assay)
263
10.2.9 Substrate Induced Respiration (SIR)
264
10.2.9.1 Procedure
265
10.2.10 Soil CO2 Evolution and N Mineralization
265
10.2.10.1 Procedure
266
10.2.11 Arginine Ammonification
267
References
267
11 Methods of Characterizing and Fingerprinting Soils for Forensic Application 271
LORNA A. DAWSON, COLIN D. CAMPBELL, STEPHEN HILLIER, AND MARK J. BREWER
11.1 Introduction
272
11.2 Soil Evidence
272
11.2.1 Background and Historical Perspective
272
11.2.2 The Evidential Value of Soils
274
11.3 Methods
275
11.3.1 Sampling and Handling
275
11.3.2 Physical Characteristics of Soil
277
11.3.2.1 Color
277
11.3.2.2 Particle Size Distribution Analysis
278
11.3.2.3 Microscopy
279
11.3.3 Chemical Analyses
281
11.3.3.1 Elemental Analysis, Trace Metals, Pollutants
281
11.3.3.2 Infrared (IR) Fingerprinting Methods
284
11.3.3.3 Other Chemical Fingerprinting Methods
285
11.3.3.4 Mineralogy
285
11.3.4 Biological Analyses
291
11.3.4.1 Palynology
291
11.3.4
2. Diatoms
295
11.3.4.3 Soil Organic Matter (SOM.)
295
11.3.4.4 Botanical Fragments
296
11.3.4.5 Microbial Fingerprints
298
11.3.5 Combined Approaches
301
11.3.6 Polyphasic Approaches and Links to Databases
303
11.3.7 Statistical Considerations and Presentation of Evidence in Court
304
11.4 Conclusions
306
References
307
Index 317


Mark Tibbett, David O. Carter