Muutke küpsiste eelistusi

E-raamat: Soil Spectral Inference with R: Analysing Digital Soil Spectra using the R Programming Environment

  • Formaat: EPUB+DRM
  • Sari: Progress in Soil Science
  • Ilmumisaeg: 25-Feb-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030648961
  • Formaat - EPUB+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Progress in Soil Science
  • Ilmumisaeg: 25-Feb-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030648961

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a didactic overview of techniques for inferring information from soil spectroscopic data, and the codes in the R programming language for performing such analyses.  It is intended for students, researchers and practitioners looking to infer soil information from spectroscopic data, focusing mainly on, but not restricted to, the infrared range of the electromagnetic spectrum. Little prior knowledge of the R programming language or digital soil spectra is required. We work through the steps to process spectroscopic data systematically.
1. Introduction.-
2. Getting Started with R.-
3. Material.-
4. Data Handling of Spectra.-
5. Pre-Processing of Spectra.-
6. Similarity between Spectra and the Detection of Outlier.-
7. Selection of the Calibration Sample.-
8. Estimating Soil Properties and Classes from Spectra.-
9. Spectral Transformation.

Alexandre Wadoux is Research Associate in soil science at the University of Sydney and member of the Sydney Institute of Agriculture, Australia. Brendan Malone is Senior Research Scientist in soil science at CSIRO Canberra, Australia. Budiman Minasny is Professor in soil-landscape modelling at the University of Sydney, Australia. Mario Fajardo is Postdoctoral Research Fellow at the Precision Agriculture Laboratory of the University of Sydney, Australia. Alex McBratney is Professor of Digital Agriculture & Soil Science at the University of Sydney and Director of the Sydney Institute of Agriculture, Australia.