Muutke küpsiste eelistusi

E-raamat: Solid Oxide Fuel Cells: From Materials to System Modeling

Edited by (The Hong Kong Polytechnic University, Hong Kong), Edited by (The Hong Kong University of Science and Technology, Hong Kong)
  • Formaat - PDF+DRM
  • Hind: 197,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode.









This book presents an overview of the SOFC technology with a focus on the recent developments in new technologies and new ideas for addressing the key issues of SOFC development.









This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R&D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications.
Chapter 1 Introduction to Stationary Fuel Cells 1(25)
Ibrahim Dincer
C. Ozgur Colpan
1.1 General Introduction to Fuel Cells
1(1)
1.2 Introduction to Low-Temperature Fuel Cells
2(2)
1.3 Introduction to Solid Oxide Fuel Cells
4(5)
1.3.1 Classification of SOFC Systems
5(2)
1.3.2 Fuel Options for SOFC
7(2)
1.4 Integrated SOFC Systems
9(3)
1.5 Basic SOFC Modelling
12(2)
1.6 Case Study
14(8)
1.6.1 Analysis
14(6)
1.6.2 Results and Discussion
20(2)
1.7 Conclusions
22(2)
References
24(2)
Chapter 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) 26(30)
Yu Liu
Moses Tade
Zongping Shao
2.1 A General Introduction to Electrolyte of SOFCs
26(1)
2.2 The Requirements of Electrolyte
27(1)
2.3 Classification of Electrolytes
28(18)
2.3.1 Oxygen-ion Conducting Electrolyte
28(9)
2.3.2 Proton-conducting Electrolyte
37(8)
2.3.3 Dual-phase Composite Electrolyte
45(1)
2.4 Future Vision
46(1)
References
47(9)
Chapter 3 Cathode Material Development 56(32)
Yao Wang
Yanxiang Zhang
Ling Zhao
Changrong Xia
3.1 Introduction
56(1)
3.2 Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs
57(16)
3.2.1 Electron Conducting Cathodes
57(4)
3.2.2 Mixed Oxygen Ion-Electron Conducting Cathodes
61(4)
3.2.3 Microstructure Optimized Cathodes
65(5)
3.2.4 Cathode Reaction Mechanisms
70(3)
3.3 Cathodes for Proton-Conducting Electrolyte Based SOFCs
73(9)
3.3.1 Electron-Conducting Cathodes
73(1)
3.3.2 Mixed Oxygen Ion-Electron Conducting Cathodes
74(3)
3.3.3 Mixed Electron-Proton Conducting Cathodes
77(1)
3.3.4 Microstructure Optimized Cathodes
78(2)
3.3.5 Cathode Reaction Mechanisms
80(2)
3.4 Summary and Conclusions
82(1)
Acknowledgements
82(1)
References
83(5)
Chapter 4 Anode Material Development 88(18)
Shamiul Islam
Josephine M. Hill
4.1 Required Properties of Anode Materials
88(1)
4.2 Hydrogen Fuel
89(1)
4.3 Methane Fuel
90(4)
4.3.1 Conventional Ni/YSZ Anodes
91(1)
4.3.2 Alternative Anodes
92(2)
4.4 Higher Hydrocarbon Fuels (Propane and Butane)
94(1)
4.5 Fuels from Biomass
95(3)
4.5.1 Biomass-Simulated Gas
96(1)
4.5.2 Biomass - Actual Gas
97(1)
4.6 Liquid Fuels
98(2)
4.7 Ammonia Fuel
100(1)
4.8 Conclusions
101(1)
References
101(5)
Chapter 5 Interconnect Materials for SOFC Stacks 106(29)
Xingbo Liu
Junwei Wu
Christopher Johnson
5.1 Introduction
106(1)
5.2 Lanthanum Chromites as Interconnect
107(9)
5.2.1 Conductivity
108(3)
5.2.2 Thermal Expansion
111(2)
5.2.3 Gas Tightness, Processing and Chemical Stability
113(1)
5.2.4 Other Ceramic Interconnect
114(1)
5.2.5 Applications
114(2)
5.3 Metallic Alloys as Interconnect
116(14)
5.3.1 Selection of Metallic Materials
116(4)
5.3.2 Problems for Metallic Materials as Interconnect
120(3)
5.3.3 Interconnect Coatings
123(3)
5.3.4 Applications of Metallic Interconnects
126(4)
5.4 Concluding Remarks
130(1)
References
130(5)
Chapter 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration 135(43)
San Ping Jiang
6.1 Introduction
135(1)
6.2 Infiltration Process
136(6)
6.2.1 The Technique
136(4)
6.2.2 Factors Affecting Infiltration Process and Microstructure
140(2)
6.3 Nano-structured Electrodes
142(13)
6.3.1 Performance Promotion Factor
142(1)
6.3.2 Nano-structured Cathodes
143(7)
6.3.3 Nano-structured Anodes
150(5)
6.4 Microstructure and Microstructural Stability of Nano-structured Electrodes
155(7)
6.4.1 Microstructure Effect
155(3)
6.4.2 Microstructural Stability of Nano-structured Electrodes
158(4)
6.5 Electrocatalytic Effects of Infiltrated Nanoparticles
162(6)
6.6 Conclusions
168(1)
Acknowledgement
169(1)
References
169(9)
Chapter 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes 178(22)
P.R. Shearing
N.P. Brandon
7.1 The Importance of 3D Characterisation and the Limitations of Stereology
179(5)
7.2 Focused Ion Beam Characterisation
184(5)
7.2.1 The FIB-SEM Instrument
184(2)
7.2.2 Application of FIB-SEM Techniques to SOFC Materials
186(3)
7.3 Microstructural Characterisation using X-rays
189(6)
7.3.1 X-ray Microscopy and Tomography
189(2)
7.3.2 Lab X-ray Instruments
191(1)
7.3.3 Synchrotron X-ray Instruments
192(1)
7.3.4 4-Dimensional Tomography
193(2)
7.4 Data Analysis and Image Based Modelling
195(1)
7.4.1 Data Analysis
195(1)
7.4.2 Image Based Modelling
196(1)
7.5 Conclusions
196(1)
References
197(3)
Chapter 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode 200(19)
Naoki Shikazono
Nobuhide Kasagi
8.1 Introduction
200(1)
8.2 Experimental
201(1)
8.2.1 Button Cell Experiment
201(1)
8.2.2 Microstructure Reconstruction Using FIB-SEM
202(1)
8.3 Numerical Method
202(10)
8.3.1 Quantification of Microstructural Parameters
202(5)
8.3.2 Governing Equations for Polarization Simulation
207(4)
8.3.3 Computational Scheme
211(1)
8.4 Results and Discussions
212(3)
8.5 Conclusions
215(1)
Acknowledgements
216(1)
References
216(3)
Chapter 9 Multi-scale Modelling of Solid Oxide Fuel Cells 219(28)
Wolfgang G. Bessler
9.1 Introduction and Motivation
219(1)
9.2 Modelling Methodologies: From the Atomistic to the System Scale
220(7)
9.2.1 Overview
220(1)
9.2.2 Molecular Level: Atomistic Modelling
220(2)
9.2.3 Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics
222(2)
9.2.4 Electrode Level (II): Porous Mass and Charge Transport
224(1)
9.2.5 Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport
225(1)
9.2.6 Stack Level: Computational Fluid Dynamics Based Design
226(1)
9.2.7 System Level
226(1)
9.3 Bridging the Gap Between Scales
227(10)
9.3.1 General Aspects
227(1)
9.3.2 Electrochemistry
228(4)
9.3.3 Transport
232(2)
9.3.4 Structure
234(3)
9.4 Multi-scale Models for SOFC System Simulation and Control
237(3)
9.4.1 Pressurized SOFC System for a Hybrid Power Plant
237(1)
9.4.2 Tubular SOFC System for Mobile APU Applications
237(3)
9.5 Conclusions
240(1)
Acknowledgements
241(1)
References
241(6)
Chapter 10 Fuel Cells Running on Alternative Fuels 247(41)
Xinwen Zhou
Ning Yan
Jing-Li Luo
10.1 Introduction
247(1)
10.2 Fuel Cell Reactor Set-up
248(1)
10.3 SOFCs Running on Sourgas
248(8)
10.4 SOFCs Running on C2H6 and C3H8
256(13)
10.4.1 Development of Electrolyte of PC-SOFCs
258(4)
10.4.2 Development of Anode Materials of PC-SOFCs
262(7)
10.5 SOFCs Running on Syngas Containing H2S
269(7)
10.6 SOFCs Running on Pure H2S
276(5)
10.7 Summary
281(1)
Acknowledgements
282(1)
References
282(6)
Chapter 11 Long Term Operating Stability 288(39)
Haruo Xishimoto
Teruhisa Horita
Harumi Yokokawa
11.1 Introduction
288(1)
11.2 Durability of Stacks/Systems
289(5)
11.2.1 Determination of Stack Performance
289(1)
11.2.2 Performance Degradation and Materials Deteriorations
289(3)
11.2.3 Impurities and their Poisoning Effects on Electrode Reactivity
292(2)
11.3 Deteriorations of Electrolytes
294(15)
11.3.1 Destabilization of Mn Dissolved YSZ
296(6)
11.3.2 Conductivity Decrease in Ni-dissolved YSZ
302(7)
11.4 Performance Degradations of Cathode and Anodes
309(11)
11.4.1 Cathode Poisoning
309(7)
11.4.2 Sintering of Ni Cermet Anodes
316(4)
11.5 For Future Work
320(1)
11.6 Conclusions
321(1)
Acknowledgement
321(1)
References
321(6)
Chapter 12 Application of SOFCs in Combined Heat, Cooling and Power Systems 327(56)
R.J. Braun
P. Kazempoor
12.1 Introduction
327(4)
12.1.1 Drivers for Interest in Co- and Tri-generation Using Fuel Cells
328(1)
12.1.2 Overview of CHP and CCHP
329(2)
12.2 Application Characteristics & Building Integration
331(7)
12.2.1 Commercial Buildings
332(2)
12.2.2 Residential Applications
334(1)
12.2.3 Building Integration & Operating Strategies
335(3)
12.3 Overview of SOFC-CHP/CCHP Systems
338(4)
12.3.1 SOFC System Description for CHP (Co-generation)
339(1)
12.3.2 SOFC System Description for CCHP (Tri-generation)
340(2)
12.4 Modelling Approaches: Cell to System
342(14)
12.4.1 System-level Modelling and Performance Estimation
344(5)
12.4.2 Cell/Stack Modelling for SOFC System Simulation
349(6)
12.4.3 System Optimization Using Techno-economic Model Formulations
355(1)
12.5 Evaluation of SOFC Systems in CCHP Applications
356(9)
12.5.1 Micro-CHP
356(7)
12.5.2 Large-scale CHP and CCHP Applications
363(2)
12.6 Commercial Developments of SOFC-CHP Systems
365(6)
12.6.1 Commercialization Efforts
366(1)
12.6.2 Demonstrations
367(4)
12.7 Market Barriers and Challenges
371(5)
12.7.1 Energy Pricing
371(1)
12.7.2 SOFC Costs
372(1)
12.7.3 Technical Barriers
373(1)
12.7.4 Market Barriers and Environmental Impact
373(3)
12.8 Summary
376(1)
References
376(7)
Chapter 13 Integrated SOFC and Gas Turbine Systems 383(80)
Francesco Cause
Massimo Dentice d'Accadia
13.1 Introduction
383(2)
13.2 SOFC/GT Prototypes
385(7)
13.3 SOFC/GT Layouts Classification
392(2)
13.4 SOFC/GT Pressurized Cycles
394(30)
13.4.1 Internally Reformed SOFC/GT Cycles
395(1)
13.4.2 Anode Recirculation
396(6)
13.4.3 Heat Recovery Steam Generator (HRSG)
402(9)
13.4.4 Externally Reformed SOFC/GT Cycles
411(1)
13.4.5 Hybrid SOFC/GT-Cheng Cycles
411(3)
13.4.6 Hybrid SOFC/Humidified Air Turbine (HAT)
414(1)
13.4.7 Hybrid SOFC/GT-ITSOFC Cycles
415(2)
13.4.8 Hybrid SOFC/GT-Rankine Cycles
417(2)
13.4.9 Hybrid SOFC/GT with Air Recirculation or Exhaust Gas Recirculation (EGR)
419(5)
13.5 SOFC/GT Atmospheric Cycles
424(3)
13.6 SOFC/GT Power Plant: Control Strategies
427(9)
13.7 Hybrid SOFC/GT Systems Fed by Alternative Fuels
436(11)
13.8 IGCC SOFC/GT Power Plants
447(5)
References
452(11)
Chapter 14 Modelling and Control of Solid Oxide Fuel Cell 463(48)
Xin-jian Zhu
Hai-bo Huo
Xiao-juan Wu
Bo Huang
14.1 Static Identification Model
464(14)
14.1.1 Nonlinear Modelling Based on LS-SVM
464(6)
14.1.2 Nonlinear Modelling Based on GA-RBF
470(8)
14.2 Dynamic Identification Modelling for SOFC
478(18)
14.2.1 ANFIS Identification Modelling
479(8)
14.2.2 Hammerstein Identification Modelling
487(9)
14.3 Control Strategies of the SOFC
496(9)
14.3.1 Constant Voltage Control
497(4)
14.3.2 Constant Fuel Utilization Control
501(1)
14.3.3 Simulation
502(3)
14.4 Conclusions
505(1)
References
506(5)
Subject Index 511