|
Classical Mathematical Theory |
|
|
|
|
2 | (2) |
|
The Oldest Differential Equations |
|
|
4 | (8) |
|
|
4 | (2) |
|
Leibniz and the Bernoulli Brothers |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (2) |
|
Elementary Integration Methods |
|
|
12 | (4) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (2) |
|
Linear Differential Equations |
|
|
16 | (4) |
|
Equations with Constant Coefficients |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (1) |
|
Equations with Weak Singularities |
|
|
20 | (6) |
|
|
20 | (3) |
|
|
23 | (1) |
|
|
24 | (2) |
|
|
26 | (9) |
|
The Vibrating String and Propagation of Sound |
|
|
26 | (3) |
|
|
29 | (1) |
|
|
30 | (2) |
|
|
32 | (2) |
|
|
34 | (1) |
|
A General Existence Theorem |
|
|
35 | (9) |
|
Convergence of Euler's Method |
|
|
35 | (6) |
|
Existence Theorem of Peano |
|
|
41 | (2) |
|
|
43 | (1) |
|
Existence Theory using Interation Methods and Taylor Series |
|
|
44 | (7) |
|
Picard-Lindelof Iteration |
|
|
45 | (1) |
|
|
46 | (1) |
|
Recursive Computation of Taylor Coefficients |
|
|
47 | (2) |
|
|
49 | (2) |
|
Existence Theory for Systems of Equations |
|
|
51 | (5) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (1) |
|
Differential Inequalities |
|
|
56 | (8) |
|
|
56 | (1) |
|
|
57 | (3) |
|
Estimates Using One-Sided Lipschitz Conditions |
|
|
60 | (2) |
|
|
62 | (2) |
|
Systems of Linear Differential Equations |
|
|
64 | (5) |
|
|
65 | (1) |
|
Inhomogeneous Linear Equations |
|
|
66 | (1) |
|
The Abel-Liouville-Jacobi-Ostrogradskii Identity |
|
|
66 | (1) |
|
|
67 | (2) |
|
Systems with Constant Coefficients |
|
|
69 | (11) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
The Jordan Canonical Form |
|
|
73 | (4) |
|
|
77 | (1) |
|
|
78 | (2) |
|
|
80 | (12) |
|
|
80 | (1) |
|
The Routh-Hurwitz Criterion |
|
|
81 | (4) |
|
Computational Considerations |
|
|
85 | (1) |
|
|
86 | (1) |
|
Stability of Nonlinear Systems |
|
|
87 | (1) |
|
Stability of Non-Autonomous Systems |
|
|
88 | (1) |
|
|
89 | (3) |
|
Derivatives with Respect to Parameters and Initial Values |
|
|
92 | (13) |
|
The Derivative with Respect to a Parameter |
|
|
93 | (2) |
|
Derivatives with Respect to Initial Values |
|
|
95 | (1) |
|
The Nonlinear Variation-of-Constants Formula |
|
|
96 | (1) |
|
Flows and Volume-Preserving Flows |
|
|
97 | (3) |
|
Canonical Equations and Symplectic Mappings |
|
|
100 | (4) |
|
|
104 | (1) |
|
Boundary Value and Eigenvalue Problems |
|
|
105 | (6) |
|
|
105 | (2) |
|
Sturm-Liouville Eigenvalue Problems |
|
|
107 | (3) |
|
|
110 | (1) |
|
Periodic Solutions, Limit Cycles, Strange Attractors |
|
|
111 | (21) |
|
|
111 | (4) |
|
|
115 | (2) |
|
Limit Cycles in Higher Dimensions, Hopf Bifurcation |
|
|
117 | (3) |
|
|
120 | (3) |
|
The Ups and Downs of the Lorenz Model |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
126 | (6) |
|
Runge-Kutta and Extrapolation Methods |
|
|
|
The First Runge-Kutta Methods |
|
|
132 | (11) |
|
General Formulation of Runge-Kutta Methods |
|
|
134 | (1) |
|
Discussion of Methods of Order 4 |
|
|
135 | (4) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (2) |
|
Order Conditions for Runge-Kutta Methods |
|
|
143 | (13) |
|
The Derivatives of the True Solution |
|
|
145 | (1) |
|
|
145 | (1) |
|
Trees and Elementary Differentials |
|
|
145 | (3) |
|
The Taylor Expansion of the True Solution |
|
|
148 | (1) |
|
|
149 | (2) |
|
The Derivatives of the Numerical Solution |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (2) |
|
Error Estimation and Convergence for RK Methods |
|
|
156 | (8) |
|
|
156 | (2) |
|
|
158 | (1) |
|
Estimation of the Global Error |
|
|
159 | (4) |
|
|
163 | (1) |
|
Practical Error Estimation and Step Size Selection |
|
|
164 | (9) |
|
|
164 | (1) |
|
Embedded Runge-Kutta Formulas |
|
|
165 | (2) |
|
Automatic Step Size Control |
|
|
167 | (2) |
|
|
169 | (1) |
|
|
170 | (2) |
|
|
172 | (1) |
|
Explicit Runge-Kutta Methods of Higher Order |
|
|
173 | (15) |
|
|
173 | (2) |
|
6-Stage, 5th Order Processes |
|
|
175 | (1) |
|
Embedded Formulas of Order 5 |
|
|
176 | (3) |
|
|
179 | (1) |
|
Embedded Formulas of High Order |
|
|
180 | (1) |
|
An 8th Order Embedded Method |
|
|
181 | (4) |
|
|
185 | (3) |
|
Dense Output, Discontinuties, Derivatives |
|
|
188 | (16) |
|
|
188 | (3) |
|
Continuous Dormand & Prince Pairs |
|
|
191 | (3) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (4) |
|
Numerical Computation of Derivatives with Respect to Initial Values and Parameters |
|
|
200 | (2) |
|
|
202 | (2) |
|
Implicit Runge-Kutta Methods |
|
|
204 | (12) |
|
Existence of a Numerical Solution |
|
|
206 | (2) |
|
The Methods of Kuntzmann and Butcher of Order 2s |
|
|
208 | (2) |
|
IRK Methods Based on Lobatto Quadrature |
|
|
210 | (1) |
|
|
211 | (3) |
|
|
214 | (2) |
|
Asymptotic Expansion of the Global Error |
|
|
216 | (8) |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
219 | (1) |
|
Properties of the Adjoint Method |
|
|
220 | (1) |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
224 | (20) |
|
|
224 | (2) |
|
The Aitken - Neville Algorithm |
|
|
226 | (2) |
|
|
228 | (3) |
|
Asymptotic Expansion for Odd Indices |
|
|
231 | (1) |
|
Existence of Explicit RK Methods of Arbitrary Order |
|
|
232 | (1) |
|
Order and Step Size Control |
|
|
233 | (4) |
|
Dense Output for the GBS Method |
|
|
237 | (3) |
|
Control of the Interpolation Error |
|
|
240 | (1) |
|
|
241 | (3) |
|
|
244 | (13) |
|
|
244 | (5) |
|
|
249 | (5) |
|
A ``Stretched'' Error Estimator for DOP853 |
|
|
254 | (2) |
|
Effect of Step-Number Sequence in ODEX |
|
|
256 | (1) |
|
|
257 | (7) |
|
Parallel Runge-Kutta Methods |
|
|
258 | (1) |
|
Parallel Iterated Runge-Kutta Methods |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
264 | (10) |
|
Composition of Runge-Kutta Methods |
|
|
264 | (2) |
|
|
266 | (3) |
|
Order Conditions for Runge-Kutta Methods |
|
|
269 | (1) |
|
Butcher's ``Effective Order'' |
|
|
270 | (2) |
|
|
272 | (2) |
|
Higher Derivative Methods |
|
|
274 | (9) |
|
|
275 | (2) |
|
Hermite-Obreschkoff Methods |
|
|
277 | (1) |
|
|
278 | (2) |
|
General Theory of Order Conditions |
|
|
280 | (1) |
|
|
281 | (2) |
|
Numerical Methods for Second Order Differential Equations |
|
|
283 | (19) |
|
|
284 | (2) |
|
The Derivatives of the Exact Solution |
|
|
286 | (2) |
|
The Derivatives of the Numerical Solution |
|
|
288 | (2) |
|
|
290 | (1) |
|
On the Construction of Nystrom Methods |
|
|
291 | (3) |
|
An Extrapolation Method for y'' = f(x, y) |
|
|
294 | (2) |
|
Problems for Numerical Comparisons |
|
|
296 | (2) |
|
|
298 | (2) |
|
|
300 | (2) |
|
P-Series for Partitioned Differential Equations |
|
|
302 | (10) |
|
Derivatives of the Exact Solution, P-Trees |
|
|
303 | (3) |
|
|
306 | (1) |
|
Order Conditions for Partitioned Runge-Kutta Methods |
|
|
307 | (1) |
|
Further Applications of P-Series |
|
|
308 | (3) |
|
|
311 | (1) |
|
Symplectic Integration Methods |
|
|
312 | (27) |
|
Symplectic Runge-Kutta Methods |
|
|
315 | (4) |
|
An Example from Galactic Dynamics |
|
|
319 | (7) |
|
Partitioned Runge-Kutta Methods |
|
|
326 | (4) |
|
Symplectic Nystrom Methods |
|
|
330 | (3) |
|
Conservation of the Hamiltonian; Backward Analysis |
|
|
333 | (4) |
|
|
337 | (2) |
|
Delay Differential Equations |
|
|
339 | (17) |
|
|
339 | (2) |
|
Constant Step Size Methods for Constant Delay |
|
|
341 | (1) |
|
Variable Step Size Methods |
|
|
342 | (1) |
|
|
343 | (2) |
|
An Example from Population Dynamics |
|
|
345 | (2) |
|
Infectious Disease Modelling |
|
|
347 | |
|
An Example from Enzyme Kinetics |
|
|
248 | (101) |
|
A Mathematical Model in Immunology |
|
|
349 | (2) |
|
Integro-Differential Equations |
|
|
351 | (1) |
|
|
352 | (4) |
|
Multistep Methods and General Linear Methods |
|
|
|
Classical Linear Multistep Formulas |
|
|
356 | (12) |
|
|
357 | (2) |
|
|
359 | (2) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
Methods Based on Differentiation (BDF) |
|
|
364 | (2) |
|
|
366 | (2) |
|
Local Error and Order Conditions |
|
|
368 | (10) |
|
Local Error of a Multistep Method |
|
|
368 | (2) |
|
Order of a Multistep Method |
|
|
370 | (2) |
|
|
372 | (2) |
|
|
374 | (1) |
|
The Peano Kernel of a Multistep Method |
|
|
375 | (2) |
|
|
377 | (1) |
|
Stability and the First Dahlquist Barrier |
|
|
378 | (13) |
|
Stability of the BDF-Formulas |
|
|
380 | (3) |
|
Highest Attainable Order of Stable Multistep Methods |
|
|
383 | (4) |
|
|
387 | (4) |
|
Convergence of Multistep Methods |
|
|
391 | (6) |
|
Formulation as One-Step Method |
|
|
393 | (2) |
|
|
395 | (1) |
|
|
396 | (1) |
|
Variable Step Size Multistep Methods |
|
|
397 | (13) |
|
Variable Step Size Adams Methods |
|
|
397 | (2) |
|
Recurrence Relations for gj(n), Φj(n) and Φ(n) |
|
|
399 | (1) |
|
|
400 | (1) |
|
General Variable Step Size Methods and Their Orders |
|
|
401 | (1) |
|
|
402 | (5) |
|
|
407 | (2) |
|
|
409 | (1) |
|
|
410 | (11) |
|
Equivalence with Multistep Methods |
|
|
412 | (5) |
|
|
417 | (2) |
|
|
419 | (1) |
|
|
420 | (1) |
|
Implementation and Numerical Comparisons |
|
|
421 | (9) |
|
Step Size and Order Selection |
|
|
421 | (2) |
|
|
423 | (4) |
|
|
427 | (3) |
|
|
430 | (18) |
|
A General Integration Procedure |
|
|
431 | (5) |
|
|
436 | (2) |
|
|
438 | (3) |
|
Order Conditions for General Linear Methods |
|
|
441 | (2) |
|
Construction of General Linear Methods |
|
|
443 | (2) |
|
|
445 | (3) |
|
Asymptotic Expansion of the Global Error |
|
|
448 | (13) |
|
|
448 | (2) |
|
Asymptotic Expansion for Strictly Stable Methods (8.4) |
|
|
450 | (4) |
|
|
454 | (3) |
|
|
457 | (2) |
|
|
459 | (1) |
|
|
460 | (1) |
|
Multistep Methods for Second Order Differential Equations |
|
|
461 | (14) |
|
|
462 | (2) |
|
|
464 | (1) |
|
|
465 | (2) |
|
|
467 | (1) |
|
|
468 | (3) |
|
Asymptotic Formula for the Global Error |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
473 | (2) |
Appendix. Fortran Codes |
|
475 | (16) |
|
Driver for the Code DOPRI5 |
|
|
475 | (2) |
|
|
477 | (4) |
|
|
481 | (1) |
|
|
482 | (2) |
|
|
484 | (2) |
|
Driver for the Code Retard |
|
|
486 | (2) |
|
|
488 | (3) |
Bibliography |
|
491 | (30) |
Symbol Index |
|
521 | (2) |
Subject Index |
|
523 | |