Muutke küpsiste eelistusi

E-raamat: Souslin Quasi-Orders and Bi-Embeddability of Uncountable Structures

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case) for arbitrary -Souslin quasi-orders on any Polish space, for an infinite cardinal smaller than the cardinality of R. These generalizations yield a variety of results concerning the complexity of the embeddability relation between graphs or lattices of size , the isometric embeddability relation between complete metric spaces of density character , and the linear isometric embeddability relation between (real or complex) Banach spaces of density "--

Andretta and Ros provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond the case k = w) for arbitrary k-Souslin quasi-orders on any Polish space, for k an infinite cardinal smaller than the cardinality of R. These generalizations yield a variety of results concerning the complexity of the embeddability relation between graphs or lattices of size k, the isometric embeddability relations between complete metric spaces of density character k, and the linear isometric embeddability relation between (real or complex) Banach spaces of density k. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Alessandro Andretta, Universita di Torino, Italy.

Luca Motto Ros, Universita di Torino, Italy.