Preface |
|
xi | |
|
1 The Problem of Spacecraft Trajectory Optimization |
|
|
1 | (15) |
|
|
|
1 | (2) |
|
|
3 | (9) |
|
1.3 The Situation Today with Regard to Solving Optimal Control Problems |
|
|
12 | (4) |
|
|
13 | (3) |
|
2 Primer Vector Theory and Applications |
|
|
16 | (21) |
|
|
|
16 | (1) |
|
2.2 First-Order Necessary Conditions |
|
|
17 | (6) |
|
2.3 Solution to the Primer Vector Equation |
|
|
23 | (1) |
|
2.4 Application of Primer Vector Theory to an Optimal Impulsive Trajectory |
|
|
24 | (13) |
|
|
36 | (1) |
|
3 Spacecraft Trajectory Optimization Using Direct Transcription and Nonlinear Programming |
|
|
37 | (42) |
|
|
|
|
37 | (3) |
|
3.2 Transcription Methods |
|
|
40 | (12) |
|
3.3 Selection of Coordinates |
|
|
52 | (8) |
|
3.4 Modeling Propulsion Systems |
|
|
60 | (2) |
|
3.5 Generating an Initial Guess |
|
|
62 | (3) |
|
3.6 Computational Considerations |
|
|
65 | (6) |
|
|
71 | (8) |
|
|
76 | (3) |
|
4 Elements of a Software System for Spacecraft Trajectory Optimization |
|
|
79 | (33) |
|
|
|
79 | (1) |
|
|
80 | (5) |
|
|
85 | (1) |
|
4.4 Finite Burn Control Models |
|
|
85 | (5) |
|
|
90 | (3) |
|
4.6 Trajectory Design and Optimization Examples |
|
|
93 | (17) |
|
|
110 | (2) |
|
|
110 | (2) |
|
5 Low-Thrust Trajectory Optimization Using Orbital Averaging and Control Parameterization |
|
|
112 | (27) |
|
|
5.1 Introduction and Background |
|
|
112 | (1) |
|
5.2 Low-Thrust Trajectory Optimization |
|
|
113 | (12) |
|
|
125 | (11) |
|
|
136 | (3) |
|
|
136 | (2) |
|
|
138 | (1) |
|
6 Analytic Representations of Optimal Low-Thrust Transfer in Circular Orbit |
|
|
139 | (39) |
|
|
|
139 | (2) |
|
6.2 The Optimal Unconstrained Transfer |
|
|
141 | (4) |
|
6.3 The Optimal Transfer with Altitude Constraints |
|
|
145 | (12) |
|
6.4 The Split-Sequence Transfers |
|
|
157 | (21) |
|
|
177 | (1) |
|
7 Global Optimization and Space Pruning for Spacecraft Trajectory Design |
|
|
178 | (24) |
|
|
|
178 | (1) |
|
|
179 | (1) |
|
7.3 Problem Transcription |
|
|
179 | (2) |
|
|
181 | (2) |
|
|
183 | (3) |
|
|
186 | (4) |
|
|
190 | (4) |
|
|
194 | (3) |
|
|
197 | (5) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (2) |
|
8 Incremental Techniques for Global Space Trajectory Design |
|
|
202 | (36) |
|
|
|
|
202 | (1) |
|
8.2 Modeling MGA Trajectories |
|
|
203 | (6) |
|
8.3 The Incremental Approach |
|
|
209 | (7) |
|
8.4 Testing Procedure and Performance Indicators |
|
|
216 | (5) |
|
|
221 | (13) |
|
|
234 | (4) |
|
|
235 | (3) |
|
9 Optimal Low-Thrust Trajectories Using Stable Manifolds |
|
|
238 | (25) |
|
|
|
|
238 | (2) |
|
|
240 | (7) |
|
9.3 Basics of Trajectory Optimization |
|
|
247 | (3) |
|
9.4 Generation of Periodic Orbit Constructed as an Optimization Problem |
|
|
250 | (3) |
|
9.5 Optimal Earth Orbit to Lunar Orbit Transfer: Part 1---GTO to Periodic Orbit |
|
|
253 | (3) |
|
9.6 Optimal Earth Orbit to Lunar Orbit Transfer: Part 2---Periodic Orbit to Low-Lunar Orbit |
|
|
256 | (3) |
|
9.7 Extension of the Work to Interplanetary Flight |
|
|
259 | (1) |
|
|
260 | (3) |
|
|
261 | (2) |
|
10 Swarming Theory Applied to Space Trajectory Optimization |
|
|
263 | (32) |
|
|
|
|
263 | (3) |
|
10.2 Description of the Method |
|
|
266 | (3) |
|
10.3 Lyapunov Periodic Orbits |
|
|
269 | (5) |
|
10.4 Lunar Periodic Orbits |
|
|
274 | (3) |
|
10.5 Optimal Four-Impulse Orbital Rendezvous |
|
|
277 | (7) |
|
10.6 Optimal Low-Thrust Orbital Transfers |
|
|
284 | (6) |
|
|
290 | (5) |
|
|
291 | (4) |
Index |
|
295 | |