Muutke küpsiste eelistusi

E-raamat: Spaces of Homotopy Self-Equivalences - A Survey

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1662
  • Ilmumisaeg: 14-Nov-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540691358
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 39,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1662
  • Ilmumisaeg: 14-Nov-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540691358
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calculation, numerous calculations, finite generation results, Whitehead torsion and other areas. Some 330 references are given. The book assumes familiarity with cell complexes, homology and homotopy. Graduate students and established researchers can use it for learning, for reference, and to determine the current state of knowledge.

Muu info

Springer Book Archives
1 Preliminaries
1(3)
2 Building blocks
4(3)
2.1 Eilenberg-MacLane spaces
4(1)
2.2 Moore spaces
4(2)
2.3 Finite presentability
6(1)
3 Representations: homology and homotopy
7(4)
4 Surfaces
11(8)
4.1 Homeotopy and mapping-class groups
12(2)
4.2 Homology representations
14(2)
4.3 Braid groups
16(1)
4.4 Other properties
17(2)
5 Generators: surface, modular groups
19(9)
5.1 Twist-homeomorphisms
19(1)
5.2 Orientable surfaces
20(1)
5.3 Non-orientable surfaces
21(1)
5.4 Low genus examples
22(1)
5.5 Presentations of homeotopy groups
23(1)
5.6 Braid groups
24(1)
5.7 Free, free abelian, and symplectic groups
25(1)
5.8 Torelli groups
26(2)
6 Manifolds of dimension three or more
28(6)
6.1 The homomorphism H(*)(M) XXX(*)(M)
28(2)
6.2 Finite generation, finite presentation and finiteness
30(2)
6.3 Relations between E(M), H(M) and Diff(M)
32(1)
6.4 Generation of higher homotopy groups
33(1)
7 XXX(*)(X) not finitely generated
34(2)
8 Localization
36(4)
9 XXX(*)(X) finitely presented, nilpotent
40(4)
10 L-R duality
44(1)
11 Cellular/homology complexes: methods
45(9)
12 Cellular, homology complexes: calculations
54(9)
12.1 Simply-connected complexes with only two cells
54(1)
12.2 Simply-connected complexes: three or more cells
55(1)
12.3 Products of spheres, sphere bundles over spheres
56(3)
12.4 H-spaces of low rank
59(2)
12.5 Projective spaces
61(2)
13 Non-1-connected Postnikov: methods
63(11)
13.1 top (M) and based homotopy classes
63(7)
13.2 Free homotopy classes
70(1)
13.3 Historical development
71(1)
13.4 Some simplifications
72(2)
14 Homotopy systems, chain complexes
74(6)
15 Non-1-connected spaces: calculations
80(14)
15.1 (Pi, n)-complexes
81(1)
15.2 Lens spaces of CA presentations
82(6)
15.3 (Pi, n)-complexes: XXX finite
88(4)
15.4 (Pi, n)-complexes: infinite XXX of finite Hirsch-rank
92(1)
15.5 Other examples
93(1)
16 Whitehead torsion, simple homotopy
94(4)
16.1 Spaces for which T is surjective
95(1)
16.2 Spaces for which T is not surjective
96(1)
16.3 The image T(K(*)(PI1)(P(PI)))
96(1)
16.4 The pseudo-projective planes
96(1)
16.5 Finite (PI, n)-complexes
97(1)
17 Unions and products
98(10)
17.1 The union of two h-coloops
98(2)
17.2 Spaces of the form X = M(m)(XXX) XXX M(n)(PI)
100(2)
17.3 Spaces of the form S(m) V X
102(1)
17.4 The product of two h-loops
103(2)
17.5 A product or union: one space an h-loop or h-coloop
105(1)
17.6 The representation XXX(*)(X x Y) XXX(*)(X) x XXX(*)(Y)
106(1)
17.7 Unions and products of n spaces (n Greater than Equal to 3)
107(1)
17.8 Historical development
107(1)
18 Group theoretic properties
108(5)
18.1 Realizability
108(1)
18.2 Rigidity
109(1)
18.3 Elements of order p and finiteness
109(2)
18.4 Rank
111(1)
18.5 Non-abelian nature
111(1)
18.6 Residual finiteness
112(1)
19 Homotopy type, homotopy groups
113(8)
19.1 The homotopy type of E(X)
113(4)
19.2 Sections of XXX : E(X) XXX X
117(1)
19.3 The image of Delta(*) : PI(X)(1)(X:1) XXX PI1(X)
118(1)
19.4 Rational homotopy groups
119(1)
19.5 Nilpotent actions and finite type
119(2)
20 Homotopy automorphisms of H-spaces
121(3)
20.1 Products of H-spaces
122(1)
20.2 H-spaces of finite rank
122(1)
20.3 Group theoretic properties
123(1)
21 Fibre and equivariant HE's
124(6)
21.1 Fibre homotopy equivalences, classifying spaces
124(2)
21.2 An exact sequence for calculation
126(1)
21.3 Equivariant homotopy equivalences
127(1)
21.4 Nilpotency, arithmeticity and uncountability
128(1)
21.5 Equivalence of the theories
128(1)
21.6 Calculations
129(1)
22 Applications
130(4)
22.1 Classification of spaces of the same n-type for all n
130(1)
22.2 Classification of fibre bundles and fibre spaces
131(2)
22.3 Sets of rational homotopy type
133(1)
Appendix A Arithmetic groups and commensurability 134(1)
Appendix B Nilpotency, rank and group actions 135(3)
References 138(25)
List of notation 163(2)
Index 165