Muutke küpsiste eelistusi

E-raamat: Sparse Grids and Applications

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.
An Adaptive Sparse Grid Approach for Time Series Prediction
1(30)
Bastian Bohn
Michael Griebel
Efficient Analysis of High Dimensional Data in Tensor Formats
31(26)
Mike Espig
Wolfgang Hackbusch
Alexander Litvinenko
Hermann G. Matthies
Elmar Zander
Sparse Grids in a Nutshell
57(24)
Jochen Garcke
Intraday Foreign Exchange Rate Forecasting Using Sparse Grids
81(26)
Jochen Garcke
Thomas Gerstner
Michael Griebel
Dimension- and Time-Adaptive Multilevel Monte Carlo Methods
107(14)
Thomas Gerstner
Stefan Heinz
An Efficient Sparse Grid Galerkin Approach for the Numerical Valuation of Basket Options Under Kou's Jump-Diffusion Model
121(30)
Michael Griebel
Alexander Hullmann
The Use of Sparse Grid Approximation for the r-Term Tensor Representation
151(10)
Wolfgang Hackbusch
On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations
161(20)
Helmut Harbrecht
Michael Peters
Markus Siebenmorgen
Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification
181(24)
John D. Jakeman
Stephen G. Roberts
The Combination Technique for the Initial Value Problem in Linear Gyrokinetics
205(18)
Christoph Kowitz
Dirk Pfluger
Frank Jenko
Markus Hegland
Model Reduction with the Reduced Basis Method and Sparse Grids
223(20)
Benjamin Peherstorfer
Stefan Zimmer
Hans-Joachim Bungartz
Spatially Adaptive Refinement
243(20)
Dirk Pfluger
Asymptotic Expansion Around Principal Components and the Complexity of Dimension Adaptive Algorithms
263
Christoph Reisinger
Jochen Garcke is Professor at the Institute of Numerical Simulation, University of Bonn. Michael Griebel is Managing Editor of the journal Numerische Mathematik, series editor of LNCSE and volume editor of the proceedings on Meshfree Methods for PDEs, published as LNCSE 43, 57, 65 and 79.