|
|
xi | |
Preface |
|
xiii | |
|
Spatial Cluster Modelling: An Overview |
|
|
1 | (20) |
|
|
1 | (2) |
|
|
3 | (9) |
|
|
6 | (2) |
|
|
8 | (4) |
|
Notation and Model Development |
|
|
12 | (9) |
|
|
13 | (2) |
|
Point or Object Process Modelling |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
Spatio-Temporal Process Modelling |
|
|
18 | (3) |
I Point process cluster modelling |
|
21 | (102) |
|
Significance in Scale-Space for Clustering |
|
|
23 | (14) |
|
|
23 | (1) |
|
|
24 | (5) |
|
|
29 | (6) |
|
|
35 | (2) |
|
Statistical Inference for Cox Processes |
|
|
37 | (24) |
|
|
37 | (2) |
|
|
39 | (2) |
|
|
41 | (2) |
|
|
43 | (2) |
|
Parametric Models of Cox Processes |
|
|
45 | (6) |
|
Neyman-Scott Processes as Cox Processes |
|
|
45 | (3) |
|
Log Gaussian Cox Processes |
|
|
48 | (1) |
|
Shot Noise G Cox Processes |
|
|
49 | (2) |
|
Estimation for Parametric Models of Cox Processes |
|
|
51 | (3) |
|
|
54 | (4) |
|
Conditional Simulation for Neyman-Scott Processes |
|
|
55 | (1) |
|
Conditional Simulation for LGCPs |
|
|
55 | (1) |
|
Conditional Simulation for Shot-noise G Cox Processes |
|
|
56 | (2) |
|
|
58 | (3) |
|
Extrapolating and Interpolating Spatial Patterns |
|
|
61 | (26) |
|
|
61 | (1) |
|
|
62 | (4) |
|
|
63 | (1) |
|
|
63 | (1) |
|
Edge Effects and Sampling Bias |
|
|
64 | (1) |
|
|
65 | (1) |
|
Spatial Cluster Processes |
|
|
66 | (6) |
|
Independent Cluster Processes |
|
|
67 | (1) |
|
|
68 | (1) |
|
Cluster Formation Densities |
|
|
69 | (3) |
|
Bayesian Cluster Analysis |
|
|
72 | (14) |
|
|
72 | (2) |
|
Sampling Bias for Independent Cluster Processes |
|
|
74 | (1) |
|
Spatial Birth-and-Death Processes |
|
|
75 | (1) |
|
Example: Redwood Seedlings |
|
|
76 | (2) |
|
|
78 | (2) |
|
Example: Cox-Matern Cluster Process |
|
|
80 | (1) |
|
Adaptive Coupling from the Past |
|
|
80 | (4) |
|
Example: Cox-Matern Cluster Process |
|
|
84 | (2) |
|
|
86 | (1) |
|
Perfect Sampling for Point Process Cluster Modelling |
|
|
87 | (22) |
|
|
87 | (2) |
|
|
89 | (4) |
|
|
89 | (1) |
|
|
90 | (3) |
|
Sampling from the Posterior |
|
|
93 | (2) |
|
|
95 | (5) |
|
|
95 | (3) |
|
|
98 | (2) |
|
Leukemia Incidence in Upstate New York |
|
|
100 | (6) |
|
|
106 | (3) |
|
Bayesian Estimation and Segmentation of Spatial Point Processes Using Voronoi Tilings |
|
|
109 | (14) |
|
|
109 | (1) |
|
Proposed Solution Framework |
|
|
110 | (2) |
|
|
110 | (1) |
|
|
111 | (1) |
|
Markov Chain Monte Carlo Using Dynamic Voronoi Tilings |
|
|
111 | (1) |
|
|
112 | (3) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
115 | (1) |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
117 | (2) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
New Madrid Seismic Region |
|
|
118 | (1) |
|
|
119 | (4) |
II Spatial process cluster modelling |
|
123 | (88) |
|
|
125 | (22) |
|
|
125 | (1) |
|
|
126 | (9) |
|
Partitioning for Spatial Data |
|
|
127 | (1) |
|
|
128 | (3) |
|
|
131 | (1) |
|
Markov Chain Monte Carlo Simulation |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
135 | (9) |
|
The Poisson-Gamma Model for Disease Mapping |
|
|
137 | (1) |
|
Disease Mapping with Covariates |
|
|
138 | (3) |
|
East German Lip Cancer Dataset |
|
|
141 | (3) |
|
|
144 | (1) |
|
|
144 | (3) |
|
Cluster Modelling for Disease Rate Mapping |
|
|
147 | (16) |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (3) |
|
Example: U.S. Cancer Mortality Atlas |
|
|
153 | (6) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (4) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
159 | (4) |
|
Analyzing Spatial Data Using Skew-Gaussian Processes |
|
|
163 | (12) |
|
|
163 | (1) |
|
|
164 | (4) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
Real Data Illustration: Spatial Potential Data Prediction |
|
|
168 | (3) |
|
|
171 | (4) |
|
Accounting for Absorption Lines in Images Obtained with the Chandra X-ray Observatory |
|
|
175 | (24) |
|
Statistical Challenges of the Chandra X-ray Observatory |
|
|
175 | (4) |
|
|
179 | (5) |
|
Model-Based Spatial Analysis |
|
|
179 | (4) |
|
Model-Based Spectral Analysis |
|
|
183 | (1) |
|
|
184 | (8) |
|
|
184 | (1) |
|
|
185 | (3) |
|
|
188 | (2) |
|
A Simulation-Based Example |
|
|
190 | (2) |
|
Spectral Models with Absorption Lines |
|
|
192 | (4) |
|
Combining Models and Algorithms |
|
|
192 | (3) |
|
|
195 | (1) |
|
|
196 | (3) |
|
Spatial Modelling of Count Data: A Case Study in Modelling Breeding Bird Survey Data on Large Spatial Domains |
|
|
199 | (12) |
|
|
199 | (1) |
|
The Poisson Random Effects Model |
|
|
200 | (6) |
|
|
202 | (2) |
|
Model Implementation and Prediction |
|
|
204 | (1) |
|
Selected Full-Conditional Distributions |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (4) |
III Spatio-temporal cluster modelling |
|
211 | (48) |
|
Modelling Strategies for Spatial-Temporal Data |
|
|
213 | (14) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (5) |
|
D-C (Drift-Correlation) Models |
|
|
220 | (2) |
|
C-C (Correlation-Correlation) Models |
|
|
222 | (2) |
|
A Unified Analysis on the Circle |
|
|
224 | (1) |
|
|
225 | (2) |
|
Spatio-Temporal Partition Modelling: An Example from Neurophysiology |
|
|
227 | (8) |
|
|
227 | (1) |
|
The Neurophysiological Experiment |
|
|
227 | (1) |
|
The Linear Inverse Solution |
|
|
228 | (1) |
|
|
229 | (3) |
|
Initial Preparation of the Data |
|
|
229 | (1) |
|
Formulation of the Mixture Model |
|
|
230 | (2) |
|
Classification of the Inverse Solution |
|
|
232 | (2) |
|
|
234 | (1) |
|
Spatio-Temporal Cluster Modelling of Small Area Health Data |
|
|
235 | (24) |
|
|
235 | (1) |
|
Basic Cluster Modelling approaches |
|
|
235 | (5) |
|
|
236 | (1) |
|
Inter-Event versus Hidden Process Modelling |
|
|
236 | (3) |
|
Small Area Count Data Models |
|
|
239 | (1) |
|
Spatio-Temporal Extensions to Cluster Models |
|
|
239 | (1) |
|
A Spatio-Temporal Hidden Process Model |
|
|
240 | (1) |
|
|
240 | (8) |
|
|
243 | (1) |
|
The Prior Distribution for Cluster Centres |
|
|
244 | (1) |
|
Choice of Cluster Distribution Function |
|
|
245 | (1) |
|
Other Prior Distributions and the Posterior Distribution |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (1) |
|
The Posterior Sampling Algorithm |
|
|
248 | (1) |
|
Goodness-of Fit Measures for the Model |
|
|
249 | (1) |
|
Data Example: Scottish Birth Abnormalities |
|
|
249 | (7) |
|
|
249 | (1) |
|
|
250 | (2) |
|
|
252 | (4) |
|
|
256 | (3) |
References |
|
259 | (18) |
Index |
|
277 | (4) |
Author Index |
|
281 | |