Muutke küpsiste eelistusi

E-raamat: Spectral Interpretation of Decision Diagrams

  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Apr-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387217345
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Apr-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387217345
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Decision diagrams (DDs) are data structures for efficient (time/space) representations of large discrete functions. In addition to their wide application in engineering practice, DDs are now a standard part of many CAD systems for logic design and a basis for severe signal processing algorithms. Spectral Interpretation of Decision Diagrams derives from attempts to classify and uniformly interpret DDs through spectral interpretation methods, relating them to different Fourier-series-like functional expressions for discrete functions and a group-theoretic approach to DD optimization. The book examines DDs found in literature and engineering practice and provides insights into relationships between DDs and different polynomial or spectral expressions for representation of discrete functions. In addition, it offers guidelines and criteria for selection of the most suitable representation in terms of space and time complexity. The work complements theory with numerous illustrative examples from practice. Moreover, the importance of DD representations to the verification and testing of arithmetic circuits is addressed, as well as problems related to various signal processing tasks.

Arvustused

From the reviews:









"Classifying and uniformly interpreting decision diagrams through spectral interpretation methods is the main topic of this book. Necessary basic algebraic concepts are covered. The presentation is based on many examples ... . the bibliography has nearly 300 references. The main benefit is in getting a comprehensive overview of the diverse techniques and their connections. To facilitate using the book for self-study, the appendix contains simple questions which are answered in the main text." (Dieter Riebesehl, Zentralblatt MATH, Vol. 1038 (13), 2004)

Preface ix
List of Figures xiii
List of Tables xvii
1 Signals 1(6)
1.1 Signals and Signal Processing
1(5)
1.2 Summary
6(1)
2 Algebraic Structures for Signal Processing 7(10)
2.1 Domains and Ranges
7(6)
2.2 Vector spaces
13(2)
2.3 Summary
15(2)
3 Spectral Techniques 17(32)
3.1 Fourier Analysis
17(1)
3.2 Fourier and Fourier-Like Transforms on Dyadic Groups
18(2)
3.3 Reed-Muller Transform
20(5)
3.4 Arithmetic Transform
25(3)
3.5 Walsh Transform
28(2)
3.6 Kronecker Transforms
30(2)
3.7 Partial Kronecker Transforms
32(5)
3.8 Fixed Polarity Transforms
37(4)
3.9 Non-Kronecker Transforms
41(4)
3.10 Classification of Spectral Transforms
45(1)
3.11 Summary
46(3)
4 Fourier Analysis on Groups 49(22)
4.1 Discrete Functions
49(1)
4.2 Fourier Transforms
50(3)
4.3 Series Expansions
53(1)
4.4 Fourier Series
54(2)
4.5 Fourier Transform
56(1)
4.6 Walsh Transform
57(6)
4.7 Generalized Definition of Spectral Transforms
63(3)
4.8 Fixed Polarity Kronecker Transforms
66(1)
4.9 Non-Kronecker Transforms
66(4)
4.10 Summary
70(1)
5 Spectral Interpretation of Decision Diagrams 71(18)
5.l Decision Diagrams
71(7)
5.2 Spectral Interpretation of BDTs
78(1)
5.3 Spectral Interpretation of FDTs
79(5)
5.4 Bit-Level DDs
84(2)
5.5 Summary
86(3)
6 Advanced Topics in Decision Tees and Diagrams 89(36)
6.1 Decision Trees
89(9)
6.2 Basic Features of DTs
98(3)
6.3 Decision Diagrams
101(11)
6.4 Programming of Decision Diagrams
112(11)
6.5 Summary
123(2)
7 Optimization of Decision Diagrams 125(20)
7.l Decision Diagrams and Order of Variables
125(5)
7.2 Free BDDs
130(7)
7.3 Spectral Interpretation of Optimization of DDs
137(4)
7.4 Summary
141(4)
8 Word-Level Decision Diagrams 145(22)
8.1 Word-Level DDa
145(1)
8.2 Spectral Interpretation of Word-Level DDs
146(3)
8.3 Haar Transform and Related DDs
149(1)
8.4 Haar Spectral Diagrams
150(6)
8.5 Haar Spectral Transform DDs
156(10)
8.6 Summary
166(1)
9 Spectral Interpretation of Edge-Valued Decision Diagrams 167(14)
9.1 Edge-Valued Decision Diagrams
167(8)
9.2 Relationships Between Edge-Valued DDs and Other DDs
175(3)
9.3 Summary
178(3)
10 Spectral Interpretation of Ternary Decision Diagrams 181(54)
10.1 Ternary Decision Diagrams
181(1)
10.2 Spectral Transform for TDDs
182(4)
10.3 Extended Reed-Muller Transform
186(1)
10.4 ERM-Transform for EXOR-TDDs
186(5)
10.5 ERM-Transform for Other TDDs
191(2)
10.6 Calculation of TDD-Spectrum
193(5)
10.7 Calculation of the Weight Vector
198(2)
10.8 TDDs and Boolean Difference
200(6)
10.9 EXOR-TDTs and KDTs
206(1)
10.10 EXOR-TDDs and Kronecker Expressions
206(6)
10.11 EXOR-TDTs and Pseudo-KDTs
212(2)
10.12 EXOR-TDDs and Pseudo-Kronecker Expressions
214(2)
10.13 Word-Level TDDs
216(2)
10.14 Arithmetic Transform TDDs
218(2)
10.15 EXOR-TDDs, Arith-TDDs, and AC-TDDs
220(1)
10.16 ARs and AC-TDDs
221(3)
10.17 AC-TDDs for Multi-Output Functions
224(1)
10.18 Exact Minimization of FPAR-expressions
225(2)
10.19 Word-Level TDDs and Gibbs Derivatives
227(4)
10.20 TDDs and STDT(Q)s
231(1)
10.21 Summary
232(3)
11 Group Theoretic Approach to Optimization of Decision Diagrams 235(20)
11.1 DDs on C4
237(2)
11.2 DDs on Quaternion Groups
239(9)
11.3 Applications of FNADDs
248(4)
11.4 Features of DDs on Finite Groups
252(1)
11.5 Summary
253(2)
12 Closing Remarks 255(2)
Answered Questions 257(4)
References 261(18)
List of Decision Diagrams 279(4)
Index 283