Muutke küpsiste eelistusi

E-raamat: Spectral Spaces

(Centre National de la Recherche Scientifique (CNRS), Paris), (University of Manchester),
  • Formaat: EPUB+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 21-Mar-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108609593
  • Formaat - EPUB+DRM
  • Hind: 191,42 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 21-Mar-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108609593

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This first monograph on spectral spaces will be useful for graduates and researchers in mathematics and theoretical computer science who want to connect algebra and logic with geometric concepts. It is a systematic introduction and at the same time a reference source that leads up to the frontiers of current research.

Spectral spaces are a class of topological spaces. They are a tool linking algebraic structures, in a very wide sense, with geometry. They were invented to give a functional representation of Boolean algebras and distributive lattices and subsequently gained great prominence as a consequence of Grothendieck's invention of schemes. There are more than 1,000 research articles about spectral spaces, but this is the first monograph. It provides an introduction to the subject and is a unified treatment of results scattered across the literature, filling in gaps and showing the connections between different results. The book includes new research going beyond the existing literature, answering questions that naturally arise from this comprehensive approach. The authors serve graduates by starting gently with the basics. For experts, they lead them to the frontiers of current research, making this book a valuable reference source.

Arvustused

' this book is a valuable resource for anyone seriously interested in the theory of spectral spaces and represents a substantial addition to the literature on the subject.' Jimmie Lawson, New Mathematical Monographs 'The book covers a substantial amount of material that had not been considered before. It also contains material available nowhere else in book form.' Tomasz Kubiak, Mathematical Reviews Clippings

Muu info

Offers a comprehensive presentation of spectral spaces focussing on their topology and close connections with algebra, ordered structures, and logic.
Preface ix
An Outline of the History of Spectral Spaces xiii
1 Spectral Spaces and Spectral Maps
1(47)
1.1 The Definition of Spectral Spaces
2(8)
1.2 Spectral Maps and the Category of Spectral Spaces
10(3)
1.3 Boolean Spaces and the Constructible Topology
13(10)
1.4 The Inverse Topology
23(4)
1.5 Specialization and Priestley Spaces
27(9)
1.6 Examples
36(10)
1.7 Further Reading
46(2)
2 Basic Constructions
48(30)
2.1 Spectral Subspaces
49(3)
2.2 Products of Spectral Spaces
52(5)
2.3 Spectral Subspaces of Products
57(7)
2.4 Finite Coproducts
64(2)
2.5 Zariski, Real, and Other Spectra
66(12)
3 Stone Duality
78(24)
3.1 The Spectrum of a Bounded Distributive Lattice
79(3)
3.2 Stone Duality
82(6)
3.3 Spectral Spaces via Prime Ideals and Prime Filters
88(4)
3.4 The Boolean Envelope of a Bounded Distributive Lattice
92(2)
3.5 Inverse Spaces and Inverse Lattices
94(2)
3.6 The Spectrum of a Totally Ordered Set
96(2)
3.7 Further Reading
98(4)
4 Subsets of Spectral Spaces
102(39)
4.1 Quasi-Compact Subsets, Closure, and Generalization
103(4)
4.2 Directed Subsets and Specialization Chains
107(6)
4.3 Rank and Dimension
113(5)
4.4 Minimal Points and Maximal Points
118(13)
4.5 Convexity and Locally Closed Sets and Points
131(10)
5 Properties of Spectral Maps
141(27)
5.1 Images of Proconstructible Sets under Spectral Maps
142(3)
5.2 Monomorphisms and Epimorphisms
145(6)
5.3 Closed and Open Spectral Maps
151(5)
5.4 Embeddings
156(7)
5.5 Irreducible Maps and Dominant Maps
163(2)
5.6 Extending Spectral Maps
165(3)
6 Quotient Constructions
168(37)
6.1 Spectral Quotients Modulo Relations
169(5)
6.2 Saturated Relations
174(5)
6.3 Spectral Orders and Spectral Relations
179(7)
6.4 Quotients Modulo Equivalence Relations and Identifying Maps
186(11)
6.5 Spectral Quotients and Lattices
197(2)
6.6 The Space of Connected Components
199(6)
7 Scott Topology and Coarse Lower Topology
205(41)
7.1 When Scott is Spectral
206(15)
7.2 Fine Coherent Posets and Complete Lattices
221(9)
7.3 The Coarse Lower Topology on Root Systems and Forests
230(9)
7.4 Finite and Infinite Words
239(7)
8 Special Classes of Spectral Spaces
246(53)
8.1 Noetherian Spaces
247(14)
8.2 Spectral Spaces with Scattered Patch Space
261(6)
8.3 Heyting Spaces
267(12)
8.4 Normal Spectral Spaces
279(11)
8.5 Spectral Root Systems and Forests
290(9)
9 Localic Spaces
299(29)
9.1 Frames and Completeness
300(6)
9.2 Localic Spaces -- Spectra of Frames
306(5)
9.3 Localic Maps
311(4)
9.4 Localic Subspaces
315(7)
9.5 Localic Points
322(6)
10 Colimits in Spec
328(41)
10.1 Coproducts
329(11)
10.2 Fiber Sums
340(14)
10.3 Colimits
354(6)
10.4 Constructions with Fiber Sums
360(9)
11 Relations of Spec with Other Categories
369(47)
11.1 The Spectral Reflection of a Topological Space
371(13)
11.2 The Sobrification
384(6)
11.3 Spectral Reflections of Continuous Maps
390(3)
11.4 Properties of Topological Spaces and their Spectral Reflections
393(9)
11.5 How Localic Spaces are Located in the Category of Spectral Spaces
402(6)
11.6 The Categories Spec and PoSets
408(4)
11.7 The Subcategory BoolSp of Spec
412(4)
12 The Zariski Spectrum
416(69)
12.1 The Zariski Spectrum -- Topology on the Set of Prime Ideals of a Ring
419(15)
12.2 Functoriality
434(8)
12.3 Locally Closed Points and the Nullstellensatz
442(8)
12.4 The Spectrum of a Noetherian Ring
450(8)
12.5 Zariski Spectra under Ring-Theoretic Constructions
458(11)
12.6 Hochster's Results
469(16)
13 The Real Spectrum
485(55)
13.1 Motivation and Elementary Examples
487(14)
13.2 Specialization and Maximal Points
501(3)
13.3 Spectral Morphisms Induced by Ring Homomorphisms
504(11)
13.4 Real Spectra under Ring-Theoretic Constructions
515(3)
13.5 The Real Spectrum in Real Algebraic Geometry
518(13)
13.6 Further Results and Reading
531(9)
14 Spectral Spaces via Model Theory
540(39)
14.1 The Model-Theoretic Setup
541(2)
14.2 Spectral Spaces of Types
543(17)
14.3 Spectra of Structures and their Elementary Description
560(19)
Appendix: The Poset Zoo 579(11)
References 590(17)
Index of Categories and Functors 607(1)
Index of Examples 608(5)
Symbol Index 613(5)
Subject Index 618
Max Dickmann has been a researcher at the Centre National de la Recherche Scientifique (CNRS), Paris, since 1974, Directeur de Recherche since 1988 and emeritus since 2007. His research interests include the applications of spectral spaces to real algebraic geometry, quadratic forms, and related topics. Niels Schwartz is Professor of Mathematics at the Universität Passau, Germany, retired since 2016. Many of his publications are concerned with, or use, spectral spaces in essential ways. In particular, he has used spectral spaces to introduce the notion of real closed rings, an important topic in real algebra and geometry. Marcus Tressl is a mathematician working in the School of Mathematics at the University of Manchester. His research interests include model theory, ordered algebraic structures, ring theory, differential algebra, and non-Hausdorff topology.