Muutke küpsiste eelistusi

E-raamat: Spectral Theory of Guided Waves

(Vavilov Optical State Institute, St Petersburg, Russia),
  • Formaat: 310 pages
  • Ilmumisaeg: 02-Aug-2021
  • Kirjastus: Institute of Physics Publishing
  • ISBN-13: 9781000445275
  • Formaat - PDF+DRM
  • Hind: 286,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 310 pages
  • Ilmumisaeg: 02-Aug-2021
  • Kirjastus: Institute of Physics Publishing
  • ISBN-13: 9781000445275

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides a theory of linear eigenwaves of regular closed inhomogeneous, generally anisotropic, waveguides, and investigates the basic properties of the corresponding guided waves. Topics include the properties, spectrum, and dispersion theory of normal waves of regular waveguides associated with quadratic operator pencils; particular regular waveguides; and complex conjugation of elements and operators of an abstract Hilbert space. Unique in its coverage of these subjects, this distant descendant of a 1983 Russian publication should be of interest to engineers, applied mathematicians and physicists familiar with the elements of functional analysis and spectral theory. Annotation c. by Book News, Inc., Portland, Or.

Spectral Theory of Guided Waves represents a distillation of the authors' (and others) efforts over several years to rigorously discuss many of the properties of guided waves. The bulk of the book deals with the properties of eigenwaves of regular waveguiding systems and relates these to a variety of physical situations and applications to illustrate their generality. The book also includes considerable discussion of the basic properties of normal waves with quadratic operator pencils. Unique in its coverage of these subjects, the book will be of interest to engineers, applied mathematicians, and physicists with a working knowledge of functional analysis and spectral theory.

Arvustused

"The book represents an important contribution to the modern mathematical theory of waves. It is of great interest for both mathematicians and specialists in applications." -Mathematical Reviews

Preface. Introduction. General linear waveguiding systems. Basic properties of normal waves of regular waveguides associated with quadratic operator pencils. Spectrum of normal waves of regular waveguides associated with quadratic operator pencils. Behaviour of eigenwaves of regular waveguides associated with quadratic operator pencils under variation of their frequency or wavenumber. Dispersion theory for regular waveguides associated with quadratic operator pencils. Further dispersion properties of regular waveguides associated with quadratic operator pencils. Regular inhomogeneous anisotropic elastic waveguides: an implementation of the abstract theory. Various particular regular waveguides. Appendices. A: Complex conjugation of elements and operators of an abstract Hilbert space. B: Some functional spaces. Korn inequalities for domains ^D*W and C^D[ h. References. Index.
A.S Silbergleit (Author) , Y Kopilevich (Vavilov Optical State Institute, St Petersburg, Russia) (Author)