Muutke küpsiste eelistusi

E-raamat: Spectral Theory on the S-Spectrum for Quaternionic Operators

  • Formaat - PDF+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
1 Introduction
1(10)
1.1 What is Quaternionic Spectral Theory?
1(5)
1.2 Some Historical Remarks on the S-Spectrum
6(3)
1.2.1 The Discovery of the S-Spectrum
6(2)
1.2.2 Why Did It Take So Long to Understand the S-Spectrum?
8(1)
1.3 The Fueter--Sce--Qian theorem and spectral theories
9(2)
2 Slice Hyperholomorphic Functions
11(42)
2.1 Slice Hyperholomorphic Functions
13(20)
2.2 The Fueter Mapping Theorem in Integral Form
33(5)
2.3 Vector-Valued Slice Hyperholomorphic Functions
38(10)
2.4 Comments and Remarks
48(5)
3 The S-Spectrum and the S-Functional Calculus
53(22)
3.1 The S-Spectrum and the S-Resolvent Operators
53(10)
3.2 Definition of the S-Functional Calculus
63(6)
3.3 Comments and Remarks
69(6)
3.3.1 The Left Spectrum σL(T) and the Left Resolvent Operator
69(2)
3.3.2 Power Series Expansions and the S-Resolvent Equation
71(4)
4 Properties of the S-Functional Calculus for Bounded Operators
75(50)
4.1 Algebraic Properties and Riesz Projectors
75(7)
4.2 The Spectral Mapping Theorem and the Composition Rule
82(5)
4.3 Convergence in the S-Resolvent Sense
87(3)
4.4 The Taylor Formula for the S-Functional Calculus
90(14)
4.5 Bounded Operators with Commuting Components
104(4)
4.6 Perturbations of the SC-Resolvent Operators
108(4)
4.7 Some Examples
112(4)
4.8 Comments and Remarks
116(9)
4.8.1 The S-Functional Calculus for n-Tuples of Operators
117(3)
4.8.2 The W-Functional Calculus for Quaternionic Operators
120(5)
5 The S-Functional Calculus for Unbounded Operators
125(12)
5.1 The S-Spectrum and the S-Resolvent Operators
126(4)
5.2 Definition of the S-Functional Calculus
130(6)
5.3 Comments and Remarks
136(1)
6 The H∞-Functional Calculus
137(14)
6.1 The Rational Functional Calculus
137(2)
6.2 The S-Functional Calculus for Operators of Type ω
139(3)
6.3 The H∞-Functional Calculus
142(2)
6.4 Boundedness of the H∞-Functional Calculus
144(2)
6.5 Comments and Remarks
146(5)
6.5.1 Comments on Fractional Diffusion Processes
146(5)
7 The F-Functional Calculus for Bounded Operators
151(26)
7.1 The F-Resolvent Operators and the F-Functional Calculus
151(8)
7.2 Bounded Perturbations of the F-Resolvent
159(4)
7.3 The F-Resolvent Equations
163(2)
7.4 The Riesz Projectors for the F-Functional Calculus
165(3)
7.5 The Cauchy-Fueter Functional Calculus
168(3)
7.6 Comments and Remarks
171(6)
7.6.1 The F-Functional Calculus for n-Tuples of Operators
172(2)
7.6.2 The Inverse Fueter--Sce Mapping Theorem
174(3)
8 The F-Functional Calculus for Unbounded Operators
177(10)
8.1 Relations Between F-Resolvent Operators
178(3)
8.2 The F-Functional Calculus for Unbounded Operators
181(2)
8.3 Comments and Remarks
183(4)
8.3.1 F-Functional Calculus for n-Tuples of Unbounded Operators
184(3)
9 Quaternionic Operators on a Hilbert Space
187(32)
9.1 Preliminary Results
187(5)
9.2 The S-Spectrum of Some Classes of Operators
192(4)
9.3 The Splitting of a Normal Operator and Consequences
196(8)
9.4 The Continuous Functional Calculus
204(13)
9.5 Comments and Remarks
217(2)
10 Spectral Integrals
219(14)
10.1 Spectral Integrals for Bounded Measurable Functions
220(5)
10.2 Spectral Integrals for Unbounded Measurable Functions
225(6)
10.3 Comments and remarks
231(2)
11 The Spectral Theorem for Bounded Normal Operators
233(12)
11.1 Construction of the Spectral Measure
234(7)
11.2 The Spectral Theorem and Some Consequences
241(2)
11.3 Comments and Remarks
243(2)
12 The Spectral Theorem for Unbounded Normal Operators
245(10)
12.1 Some Transformations of Operators
245(2)
12.2 The Spectral Theorem for Unbounded Normal Operators
247(3)
12.3 Some Consequences of the Spectral Theorem
250(3)
12.4 Comments and Remarks
253(2)
13 Spectral Theorem for Unitary Operators
255(18)
13.1 Herglotz's Theorem in the Quaternionic Setting
255(4)
13.2 Preliminaries for the Spectral Resolution
259(6)
13.3 Further Properties of Quaternionic Riesz Projectors
265(3)
13.4 The Spectral Resolution
268(3)
13.5 Comments and Remarks
271(2)
14 Spectral Integration in the Quaternionic Setting
273(30)
14.1 Spectral Integrals of Real-Valued Slice Functions
274(4)
14.2 Imaginary Operators
278(7)
14.3 Spectral Systems and Spectral Integrals of Intrinsic Slice Functions
285(10)
14.4 On the Different Approaches to Spectral Integration
295(8)
15 Bounded Quaternionic Spectral Operators
303(34)
15.1 The Spectral Decomposition of a Spectral Operator
303(21)
15.2 Canonical Reduction and Intrinsic S-Functional Calculus for Quaternionic Spectral Operators
324(13)
Contents of the Monograph: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes 337(2)
Index 339(4)
Bibliography 343