Muutke küpsiste eelistusi

E-raamat: Spectrophotometry: Accurate Measurement of Optical Properties of Materials

Volume editor (National Research Council Canada, Ontario, Canada), Volume editor , Volume editor (NIST, Gaithersburg, MD, USA)
  • Formaat - EPUB+DRM
  • Hind: 184,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume is an essential handbook for anyone interested in performing the most accurate spectrophotometric or other optical property of materials measurements. The chapter authors were chosen from the leading experts in their respective fields and provide their wisdom and experience in measurements of reflectance, transmittance, absorptance, emittance, diffuse scattering, color, and fluorescence. The book provides the reader with the theoretical underpinning to the methods, the practical issues encountered in real measurements, and numerous examples of important applications.


    • Written by the leading international experts from industry, government, and academia
    • Written as a handbook, with in depth discussion of the topics
    • Focus on making the most accurate and reproducible measurements
    • Many practical applications and examples

    Muu info

    A hands-on text for those seeking to perform precise and accurate spectrophotometry of the optical properties of materials
    Contributors xv
    Volumes in Series xvii
    Preface xxi
    1 Introduction
    1(10)
    Thomas A. Germer
    Joanne C. Zwinkels
    Benjamin K. Tsai
    1.1 Opening Remarks
    1(3)
    1.2 Uncertainties
    4(4)
    1.3 Overview
    8(3)
    References
    9(2)
    2 Theoretical Concepts in Spectrophotometric Measurements
    11(56)
    Thomas A. Germer
    Joanne C. Zwinkels
    Benjamin K. Tsai
    2.1 Introduction
    12(1)
    2.2 Radiometric Quantities
    13(7)
    2.2.1 Nonspectral Quantities
    13(5)
    2.2.2 Spectral Quantities
    18(1)
    2.2.3 Spectrally Weighted Quantities
    19(1)
    2.3 Relationship Between Radiometric and Electromagnetic Quantities
    20(6)
    2.3.1 Plane Waves and Irradiance
    23(1)
    2.3.2 Spherical Waves and Intensity
    24(1)
    2.3.3 Fourier Expansion and Radiance
    25(1)
    2.4 The Spectrophotometric Quantities
    26(13)
    2.4.1 Generalized Scattering Functions
    27(1)
    2.4.2 Bidirectional Reflectance Distribution Function
    28(2)
    2.4.3 Reflectance and Transmittance
    30(2)
    2.4.4 Two Ideal Bidirectional Reflectance Distribution Functions
    32(2)
    2.4.5 Absorptance
    34(2)
    2.4.6 Fluorescence: Bispectral Luminescent Radiance Factor
    36(2)
    2.4.7 Emittance and the Kirchhoff Relationship
    38(1)
    2.5 Polarization
    39(4)
    2.6 Reflection and Transmission from Flat Surfaces
    43(9)
    2.6.1 Snell's Law of Refraction
    43(1)
    2.6.2 Fresnel Reflection
    44(4)
    2.6.3 Thin Films
    48(1)
    2.6.4 Thick Films
    49(3)
    2.7 Diffuse Scattering
    52(15)
    2.7.1 Volume Scattering: Theory of Kubelka and Munk
    52(2)
    2.7.2 Roughness: Facet Scattering Model
    54(5)
    2.7.3 Roughness: First-Order Vector Perturbation Theory
    59(6)
    References
    65(2)
    3 Dispersive Methods
    67(30)
    Arnold A. Gaertner
    Howard W. Yoon
    Thomas A. Germer
    3.1 Introduction
    67(2)
    3.2 General Description
    69(13)
    3.2.1 Bandpass Function
    70(4)
    3.2.2 Gratings
    74(4)
    3.2.3 Prisms
    78(3)
    3.2.4 Resolving Power
    81(1)
    3.3 Spectral Analyzer Design
    82(2)
    3.3.1 Monochromator Design
    82(2)
    3.3.2 Polychromator Design
    84(1)
    3.4 Wavelength Calibration
    84(3)
    3.5 Stray Light
    87(1)
    3.6 Optical Radiation Sources
    88(2)
    3.7 Optical Radiation Detectors
    90(7)
    References
    94(3)
    4 Fourier Transform Methods
    97(46)
    Simon G. Kaplan
    Manuel A. Quijada
    4.1 Introduction: Ideal Michelson Interferometer
    98(3)
    4.2 Real Fourier Transform Spectrometers
    101(22)
    4.2.1 Finite Scan Length and Source Size: Spectral Resolution
    101(5)
    4.2.2 Sampling the Interferogram: Spectral Bandwidth
    106(1)
    4.2.3 Phase Error and Phase Correction
    107(3)
    4.2.4 FTS Versus Dispersive Instruments
    110(4)
    4.2.5 FTS Design Considerations
    114(7)
    4.2.6 Instrument Design Examples
    121(2)
    4.3 Sources of Uncertainty and Their Reduction
    123(13)
    4.3.1 Noise
    124(1)
    4.3.2 Interferometer Alignment Drift
    124(1)
    4.3.3 Phase Error
    125(1)
    4.3.4 Detector Nonlinearity
    126(3)
    4.3.5 Interreflections
    129(1)
    4.3.6 Nonsource Emission
    130(2)
    4.3.7 Beam Geometry Errors
    132(1)
    4.3.8 Polarization Effects
    133(1)
    4.3.9 Stray Light
    134(1)
    4.3.10 Atmospheric Absorption
    134(1)
    4.3.11 Wavenumber Uncertainty
    135(1)
    4.4 Measurement Applications
    136(2)
    4.4.1 Measurement of Transmittance and Reflectance
    136(1)
    4.4.2 Measurement of Refractive Index
    137(1)
    4.4.3 Assessment of the Accuracy of FTS Measurements
    137(1)
    4.5 Recommendations for Accurate FTS Measurements
    138(5)
    4.5.1 Matching Instrument to Measurement Requirements
    138(1)
    4.5.2 Instrument Software and Data Handling
    139(1)
    4.5.3 Maintenance of Measurement Traceability
    139(1)
    References
    140(3)
    5 Regular Reflectance and Transmittance
    143(36)
    Peter A. van Nijnatten
    5.1 Introduction
    144(1)
    5.2 Relevant Background Information
    144(6)
    5.2.1 Measurement Geometry
    144(1)
    5.2.2 Measurement Equation
    145(1)
    5.2.3 Evaluation of Measurement Uncertainty
    146(1)
    5.2.4 The Role of Integrating Spheres
    147(1)
    5.2.5 Avoiding Spectral Artifacts
    148(2)
    5.3 Measurements Near-Normal Incidence
    150(8)
    5.3.1 Typical Configurations for Near-Normal Reflection Measurements
    151(2)
    5.3.2 Measuring the Transmittance and Reflectance of Coated Substrates
    153(1)
    5.3.3 Measuring Very Low Reflectance Materials
    153(1)
    5.3.4 Measuring Specular Reflectance with an FTIR
    154(2)
    5.3.5 Tools for Absolute Reflectance and Transmittance Measurements
    156(2)
    5.4 Measurements at Oblique Incidence
    158(13)
    5.4.1 Relevant Issues
    159(4)
    5.4.2 Directional Transmittance Measurements
    163(3)
    5.4.3 Relative Directional Reflection Measurements
    166(3)
    5.4.4 Absolute Directional Reflection Measurements
    169(2)
    5.5 Measuring the Reflectance of Highly Reflecting Materials
    171(8)
    5.5.1 VW Method
    172(3)
    5.5.2 IV Method
    175(2)
    References
    177(2)
    6 Diffuse Reflectance and Transmittance
    179(42)
    Andreas Hope
    6.1 Introduction
    180(2)
    6.2 Measurands
    182(2)
    6.2.1 Reflectance
    182(1)
    6.2.2 Reflectance Factor
    182(1)
    6.2.3 Radiance Factor
    183(1)
    6.2.4 Transmittance
    183(1)
    6.2.5 Relationship Between Reflectance, Transmittance, and Absorptance
    184(1)
    6.3 Notation of Diffuse Reflection Geometries
    184(3)
    6.3.1 Recommended Integrating Sphere Geometries
    186(1)
    6.4 Integrating Spheres
    187(6)
    6.4.1 Historic Information
    189(1)
    6.4.2 Setup
    190(1)
    6.4.3 Construction Principles
    190(1)
    6.4.4 Internal Coating Materials
    191(1)
    6.4.5 Homogeneity
    192(1)
    6.5 Absolute Sphere Methods for Measuring Diffuse Reflection
    193(10)
    6.5.1 Basic Considerations
    193(2)
    6.5.2 Method of Taylor (First Taylor) and Benford
    195(2)
    6.5.3 Method of Taylor (Third Taylor)
    197(1)
    6.5.4 Method of Sharp-Little
    198(1)
    6.5.5 Method of van den Akker
    199(1)
    6.5.6 Method of Korte--Schmidt
    200(2)
    6.5.7 Coblentz Sphere
    202(1)
    6.5.8 Goniometric Method
    203(1)
    6.6 Diffuse Reflection Standards
    203(9)
    6.6.1 Requirements
    204(1)
    6.6.2 Common Diffuse Reflection Standards
    205(5)
    6.6.3 Fluorescence of Diffuse Reflection Standards
    210(1)
    6.6.4 Handling Recommendations
    211(1)
    6.7 Relative Sphere Methods for Measuring Diffuse Reflection
    212(2)
    6.8 Diffuse Transmittance Measurements
    214(7)
    References
    216(5)
    7 Spectral Fluorescence Measurements
    221(70)
    Joanne C. Zwinkels
    Paul C. DeRose
    James E. Leland
    7.1 Introduction
    222(2)
    7.1.1 Fluorescence Measurement Applications
    223(1)
    7.2 Fundamental Concepts and Terminology
    224(14)
    7.2.1 Quantities Common to Analytical and Colorimetric Applications
    225(5)
    7.2.2 Specific to Analytical Applications
    230(2)
    7.2.3 Specific to Colorimetric Applications
    232(6)
    7.3 Measurement of Fluorescence Characteristics
    238(2)
    7.3.1 Bispectral Measurements
    238(1)
    7.3.2 Abridged Measurements
    239(1)
    7.4 General Instrument Design and Measurement Considerations
    240(4)
    7.4.1 Instrument Components
    240(1)
    7.4.2 Spectral Measurement Methods
    241(2)
    7.4.3 General Considerations and Good Laboratory Practices
    243(1)
    7.5 Specialized Instrument Designs and Measurement Methods
    244(16)
    7.5.1 Analytical Applications
    244(3)
    7.5.2 Colorimetric Applications
    247(9)
    7.5.3 Quantum Yield Measurements
    256(4)
    7.6 Instrument Characteristics That Impact Spectral Fluorescence Measurements
    260(14)
    7.6.1 Spectral Characteristics
    260(4)
    7.6.2 Detector Nonlinearity
    264(2)
    7.6.3 Polarization Effects
    266(3)
    7.6.4 Stray Light
    269(1)
    7.6.5 Instrument Lineshape
    270(1)
    7.6.6 Sampling Effects
    271(3)
    7.7 Sample Characteristics That Impact Fluorescence Measurements
    274(4)
    7.7.1 Optical Density
    274(1)
    7.7.2 Solvent/Matrix Properties
    275(1)
    7.7.3 Refractive Index
    275(1)
    7.7.4 Impurities
    276(1)
    7.7.5 Luminescence Lifetime
    277(1)
    7.7.6 Scattering
    277(1)
    7.8 Standards for Spectral Fluorescence Measurements
    278(13)
    7.8.1 Correcting Relative Excitation and Emission Spectra
    278(5)
    7.8.2 Intensity Verification Standards
    283(1)
    7.8.3 Fluorescent Color Standards
    284(2)
    7.8.4 Quantum Yield Standards
    286(1)
    References
    287(4)
    8 Angle-Resolved Diffuse Reflectance and Transmittance
    291(42)
    Thomas A. Germer
    John C. Stover
    Sven Schroder
    8.1 Introduction
    292(2)
    8.2 Reference-Free Measurement Methods
    294(7)
    8.2.1 The Over-Illumination Method
    295(2)
    8.2.2 The Under-Illumination Method
    297(4)
    8.3 Instrument Characterization
    301(3)
    8.3.1 The Instrument Signature
    301(2)
    8.3.2 Noise-Equivalent BRDF
    303(1)
    8.3.3 Profile of Illumination Spot
    303(1)
    8.3.4 The Field of View
    304(1)
    8.3.5 Detector Location Sensitivity
    304(1)
    8.3.6 Linearity
    304(1)
    8.4 Goniometer Designs
    304(7)
    8.4.1 In-Plane Scatterometer Designs
    304(1)
    8.4.2 Out-of-Plane Scatterometer Designs
    305(4)
    8.4.3 Multichannel Systems
    309(2)
    8.5 Uncertainty Analysis
    311(4)
    8.6 Normalization Schemes
    315(1)
    8.6.1 Relative Normalization
    315(1)
    8.6.2 Specular Normalization
    316(1)
    8.7 Special Conditions or Considerations
    316(1)
    8.7.1 Ultraviolet
    316(1)
    8.7.2 Infrared
    316(1)
    8.7.3 Polarization
    316(1)
    8.7.4 Transmission Measurements
    317(1)
    8.8 Applications
    317(16)
    8.8.1 Pressed PTFE
    318(1)
    8.8.2 Integration of BRDF
    318(3)
    8.8.3 Diffuse Black Paint
    321(1)
    8.8.4 Characterization of Surface Roughness
    322(3)
    8.8.5 Scattering Characterization of Anisotropic Surface Structures
    325(1)
    8.8.6 Predicting Out-of-Plane BRDF from In-Plane BRDF
    326(2)
    References
    328(5)
    9 Spectral Emissivity Measurements
    333(34)
    Hiromichi Watanabe
    Juntaro Ishii
    Hidenobu Wakabayashi
    Tomoyuki Kumano
    Leonard Hanssen
    9.1 Introduction
    334(2)
    9.2 Measurement Methods
    336(2)
    9.3 Spectral Emissivity Measurements Near-Ambient Temperature
    338(7)
    9.3.1 Measurement Apparatus Based on the Blackbody Comparison Method
    338(2)
    9.3.2 Calibration of the System Response
    340(2)
    9.3.3 Correction for Reflected Radiance of the Surroundings
    342(1)
    9.3.4 Traceability and Uncertainty of Spectral Emissivity Measurements
    342(3)
    9.4 Spectral Emissivity and Reflectance Measurements of Oxidized Metals
    345(4)
    9.4.1 A Broad-Spectral-Range High-Speed Spectrophotometer System
    345(4)
    9.5 Spectral Emissivity Measurements of Molten Metals at High Temperatures
    349(8)
    9.5.1 Importance of Molten Metal Emissivity Data
    349(2)
    9.5.2 Spectral Emissivity Measurements Based on Containerless Techniques
    351(6)
    9.6 Spectral Emissivity Measurements of Ceramics
    357(10)
    References
    362(5)
    10 Color and Appearance
    367(42)
    Maria E. Nadal
    Dave Wyble
    Clarence J. Zarobila
    10.1 Introduction
    367(1)
    10.2 Spectral Attributes---Color
    368(15)
    10.2.1 Definition
    368(2)
    10.2.2 CIE System
    370(6)
    10.2.3 Metamerism
    376(1)
    10.2.4 Chromaticity Coordinates and Color Spaces
    377(3)
    10.2.5 Color Difference Metrics
    380(3)
    10.3 Color-Measuring Instruments
    383(11)
    10.3.1 Geometric Considerations
    385(4)
    10.3.2 Source Considerations
    389(1)
    10.3.3 Detection and Signal Processing Considerations
    390(2)
    10.3.4 Uncertainties
    392(2)
    10.4 Gonioapparent Materials
    394(2)
    10.5 Geometrical Attributes
    396(13)
    10.5.1 Specular Gloss
    397(3)
    10.5.2 Haze
    400(3)
    10.5.3 Distinctness of Image
    403(1)
    References
    404(5)
    11 The Use of Spectrophotometry in the Pharmaceutical Industry
    409(48)
    John P. Hammond
    11.1 Introduction
    410(1)
    11.2 Introduction to the Pharmaceutical Industry
    410(4)
    11.2.1 Process Analytical Technology
    411(1)
    11.2.2 Quality by Design
    411(1)
    11.2.3 Product Development Cycle
    412(1)
    11.2.4 Discovery Research
    412(2)
    11.3 Quality System for the Analytical Laboratory
    414(5)
    11.3.1 Consideration for Quality Systems in Data Quality Assurance/Control
    414(5)
    11.4 UV and Visible Spectrophotometry
    419(14)
    11.4.1 Qualification of UV and Visible Spectrophotometers
    421(9)
    11.4.2 Validation and Verification
    430(1)
    11.4.3 Pharmaceutical Applications (UV--vis)
    430(3)
    11.5 NIR Spectrometry
    433(7)
    11.5.1 Factors That Affect NIR Spectra
    434(1)
    11.5.2 Instrumentation
    435(1)
    11.5.3 Qualification of NIR Instruments
    435(3)
    11.5.4 Method Validation
    438(1)
    11.5.5 Pharmaceutical Applications (NIR)
    439(1)
    11.6 Mid-IR Spectrometry
    440(6)
    11.6.1 Qualification of IR Spectrophotometers
    441(4)
    11.6.2 Validation and Verification
    445(1)
    11.6.3 Pharmaceutical Applications (Mid-IR)
    445(1)
    11.7 Fluorescence Spectrometry
    446(8)
    11.7.1 Qualification of Fluorescence Instruments
    447(6)
    11.7.2 Validation and Verification
    453(1)
    11.7.3 Pharmaceutical Applications (Fluorescence)
    454(1)
    11.8 Where Next?
    454(3)
    References
    455(2)
    12 Spectrophotometry Applications: Remote Sensing
    457(32)
    Carol J. Bruegge
    Roger Davies
    Florian M. Schwandner
    Felix C. Seidel
    12.1 Introduction
    458(1)
    12.2 Measurement of Atmospheric Carbon Dioxide
    458(6)
    12.3 The Remote Sensing of Clouds in the Earth's Atmosphere
    464(6)
    12.3.1 Why Clouds?
    465(1)
    12.3.2 The Spectrophotometry of Clouds: Forward Problem
    466(2)
    12.3.3 The Spectrophotometry of Clouds: Inverse Problems
    468(1)
    12.3.4 The Nakajima and King Approach for Plane-Parallel Clouds
    468(1)
    12.3.5 The Optical Depth of Thin Clouds in General
    469(1)
    12.3.6 The Optical Depth of Thick Clouds
    469(1)
    12.3.7 Cloud Altitude
    469(1)
    12.3.8 Cloud Motion Vectors
    470(1)
    12.4 The Retrieval of Snow Properties
    470(5)
    12.4.1 Snow-Covered Area
    471(1)
    12.4.2 Snow-Grain Size
    471(1)
    12.4.3 Snow Albedo
    472(1)
    12.4.4 Radiative Forcing of Light-Absorbing Impurities in Snow
    473(1)
    12.4.5 Benefits of Imaging Spectroscopy in Combination with Other Observations for Snow Remote Sensing
    474(1)
    12.5 Volcanic Unrest
    475(4)
    12.5.1 Early Remote Sensing Methods
    475(1)
    12.5.2 Applications and Relevance
    475(2)
    12.5.3 Imaging of Volcanic Landforms, Eruption Detection, and Degassing
    477(2)
    12.6 Calibration
    479(2)
    12.7 Summary
    481(8)
    Acknowledgments
    482(1)
    References
    483(6)
    13 Microspectrophotometry
    489(30)
    Paul C. Martin
    Michael B. Eyring
    13.1 Introduction
    489(1)
    13.2 Microspectrophotometer Instrument Design and Construction
    490(6)
    13.2.1 The Microscope
    491(2)
    13.2.2 The Spectrophotometer
    493(1)
    13.2.3 Computer Interface and Software Control
    494(1)
    13.2.4 MSP System Capabilities
    495(1)
    13.3 Using the MSP System
    496(2)
    13.4 Current Applications of MSP in Industry and Research
    498(17)
    13.4.1 Forensic Applications of MSP
    498(4)
    13.4.2 Microspot Thin-Film Thickness
    502(2)
    13.4.3 Graphene and Carbon Nanotubes
    504(1)
    13.4.4 Heavy Element Chemistry
    505(1)
    13.4.5 Lignins
    506(1)
    13.4.6 Cellulosic Nanomaterials
    507(1)
    13.4.7 The MSP Analysis of Gemstones and Glass Fragments
    508(4)
    13.4.8 Identifying Protein Crystals
    512(2)
    13.4.9 Gold and Silver Nanomaterials
    514(1)
    13.5 Conclusion
    515(4)
    References
    516(3)
    Index 519
    Thomas A. Germer received a B.A. in physics from the University of California, Berkeley in 1985. In 1992, he received a Ph.D. in physics from Cornell University in the field of surface electron spectroscopies and surface photochemistry. An interest in optics at surfaces led him to the National Institute of Standards and Technology (NIST), where he held a postdoctoral associateship from 1992 to 1995, performing research in picosecond and femtosecond time-resolved measurements of surface chemical and physical dynamics. He joined the NIST staff as a physicist in the 1995. Since then, he has led the NIST program on light scattering and diffraction from surfaces. His work has earned him the Department of Commerce Bronze and Silver awards, The NIST Chapter of Sigma Xi Young Scientist Award, and Fellow of the SPIE, and he has served as a topical editor for Applied Optics. He has published over 100 articles and has been granted two patents. He developed the SCATMECH library of scattering codes. Joanne Zwinkels was a Principal Research Officer at the National Research Council of Canada (NRC), retired since February 2020. She is actively involved in international standardization activities and served more than a decade as the NRC representative to the Consultative Committee of Photometry and Radiometry (CCPR), Chair of the Strategic Planning Working Group of CCPR, and International Convenor of ISO TC6/WG3.

    From 1993 until 2023 Benjamin Tsai worked as a physical scientist at NIST (National Institute of Standards and Technology) with research projects including the spectral irradiance scale, rapid thermal processing of semiconductor devices, heat flux, skin reflectance, UV exposure of reflectance standards, and photometry (measurement assurance program and research for luminous flux of LEDs).