Muutke küpsiste eelistusi

E-raamat: Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications

Edited by
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527833696
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 176,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527833696
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Spectroscopy and Characterization of Nanomaterials and Novel Materials Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field

In Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications, the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials.

The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials structure and properties - including machine-learning approaches - are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as:





A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors In-depth examinations of micro-Raman imaging of planetary analogs

Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications will also earn a place in the libraries of sensor developers and computational physicists and modelers.
Preface xix
About the Editor xxvii
Part I Spectroscopy and Characterization 1(210)
1 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides for Gas Sensing
3(30)
Olasunbo Farinre
Hawazin Alghamdi
Prabhakar Misra
1.1 Introduction and Overview
3(6)
1.1.1 Graphitic Nanomaterials
3(1)
1.1.1.1 Synthesis of Graphitic Nanomaterials
5(3)
1.1.2 Metal Oxides
8(1)
1.2 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides
9(10)
1.2.1 Graphitic Nanomaterials
9(1)
1.2.1.1 Characterization of Carbon Nanotubes (CNTs)
10(1)
1.2.1.2 Characterization of Graphene and Graphene Nanoplatelets (GnPs)
11(1)
1.2.2 Characterization of Tin Dioxide (Sn02)
12(7)
1.3 Graphitic Nanomaterials and Metal Oxide-Based Gas Sensors
19(5)
1.3.1 Fabrication of Graphitic Nanomaterials-Based Gas Sensors
19(1)
1.3.1.1 Carbon Nanotube (CNT)-Based Gas Sensors
19(1)
1.3.1.2 Graphene and Graphene Nanoplatelet (GnP)-Based Gas Sensors
20(1)
1.3.2 Fabrication of Metal Oxide-Based Gas Sensors
21(1)
1.3.2.1 Tin Dioxide (SnO2)-Based Gas Sensors
23(1)
1.4 Conclusions and Future Work
24(2)
Acknowledgments
26(1)
References
26(7)
2 Low-dimensional Carbon Nanomaterials: Synthesis, Properties, Applications Related to Heat Transfer, Energy Harvesting, Energy Storage
33(22)
Mahesh Vaka
Tejaswini Rama Bangalore Ramakrishna
Khalid Mohammad
Rashmi Walvekar
2.1 Introduction
33(2)
2.2 Synthesis and Properties of Low-dimensional Carbon Nanomaterials
35(7)
2.2.1 Zero-dimensional Carbon Nanomaterials (0-DCNs)
35(1)
2.2.1.1 Fullerene
35(1)
2.2.1.2 Carbon-encapsulated Metal Nanoparticles
35(1)
2.2.1.3 Nanodiamond
37(1)
2.2.2 Onion-like Carbons
38(1)
2.2.3 One-dimensional Carbon Nanomaterials
39(1)
2.2.3.1 Carbon Nanotube
39(1)
2.2.3.2 Carbon Fibers
39(1)
2.2.4 Two-dimensional Carbon Nanomaterials
40(2)
2.3 Applications
42(4)
2.3.1 Hydrogen Storage
42(1)
2.3.2 Solar Cells
43(1)
2.3.3 Thermal Energy Storage
44(1)
2.3.4 Energy Conversion
45(1)
2.4 Conclusions
46(1)
References
46(9)
3 Mesoscale Spin Glass Dynamics
55(12)
Samaresh Guchhait
3.1 Introduction
55(1)
3.2 What Is a Spin Glass?
56(8)
3.2.1 Spin Glass and Its Correlation Length
57(3)
3.2.2 Mesoscale Spin Glass Dynamics
60(4)
3.3 Summary
64(1)
Acknowledgments
64(1)
References
64(3)
4 Raman Spectroscopy Characterization of Mechanical and Structural Properties of Epitaxial Graphene
67(16)
Amira Ben Gouider Trabelsi
Feodor V. Kusmartsev
Anna Kusmartseva
Fatemah Homoud Alkallas
4.1 Introduction
67(1)
4.2 Epitaxial Graphene Mechanical Properties Investigation
68(9)
4.2.1 Optical Location of Epitaxial Graphene Layers
68(3)
4.2.2 Raman Location of Mechanical Properties Changes
71(1)
4.2.2.1 Graphene 2D Mode
71(1)
4.2.2.2 G Mode Investigation
74(1)
4.2.2.3 Strain Percentage
76(1)
4.3 Raman Polarization Study
77(3)
4.3.1 Size Domain of Graphene Layer
77(1)
4.3.2 Polarization Study
78(2)
4.4 Conclusions
80(1)
Acknowledgments
80(1)
References
80(3)
5 Raman Spectroscopy Studies of III-V Type II Superlattices
83(18)
Henan Liu
Yong Zhang
5.1 Introduction
83(1)
5.2 Raman Study on InAs/GaSb SL
84(6)
5.2.1 Analysis on (001) Scattering Geometry
85(1)
5.2.2 Analysis on (110) Scattering Geometry
86(4)
5.3 Raman Study on InAs/InAs1-x,Sbx SL
90(7)
5.3.1 Raman Results for the Constituent Bulks and InAs1-xSbx Alloys
90(3)
5.3.2 Analysis on (001) Scattering Geometry for the SLs
93(2)
5.3.3 Analysis on (110) Scattering for the SLs
95(2)
5.4 A Comparison Among the InAs/InA1-x,Sbx, InAs/GaSb, GaAs/AlAs SLs
97(1)
5.5 Conclusion
98(1)
References
98(3)
6 Dissecting the Molecular Properties of Nanoscale Materials Using Nuclear Magnetic Resonance Spectroscopy
101(48)
Nipanshu Agarwal
Krishna Mohan Poluri
6.1 Introduction to Nanomaterials
101(3)
6.2 Techniques Used for Characterization of Nanomaterials
104(1)
6.3 Nuclear Magnetic Resonance (NMR) Spectroscopy
105(10)
6.3.1 Principle of NMR Spectroscopy
106(1)
6.3.2 Various NMR Techniques Used in Nanomaterial Characterization
106(1)
6.3.2.1 One-dimensional NMR Spectroscopy
108(1)
6.3.2.2 Relaxometry (T1 and T2)
108(1)
6.3.2.3 Two-dimensional NMR Spectroscopy
110(4)
6.3.3 Advantages and Disadvantages of Using NMR Spectroscopy
114(1)
6.4 Applications of NMR in Nanotechnology
115(17)
6.4.1 NMR for Characterization of Nanomaterials
115(1)
6.4.1.1 Characterization of Gold Nanomaterials by NMR
115(1)
6.4.1.2 Characterization of Organic Nanomaterials by NMR
119(1)
6.4.1.3 Characterization of Quantum Dots and Nanodiamonds by NMR
120(1)
6.4.2 Elucidating the Molecular Characteristics/Interactions of Nanomaterials Using NMR
120(1)
6.4.2.1 Characterizing Nanodisks Using Paramagnetic NMR
120(1)
6.4.2.2 Characterizing Nanomaterials Using Low Field NMR (LF-NMR)
123(1)
6.4.2.3 Analyzing Nanomaterial Interactions Using 2D NMR Techniques
123(5)
6.4.3 Characterization of Magnetic Contrast Agents (MR-CAs)
128(4)
6.5 Conclusions
132(1)
Acknowledgments
132(1)
References
132(17)
7 Charge Dynamical Properties of Photoresponsive and Novel Semiconductors Using Time-Resolved Millimeter-Wave Apparatus
149(38)
Biswadev Roy
Branislav Vlahovic
M.H. Wu
C.R. Jones
7.1 Introduction
149(13)
7.1.1 Why Charge Dynamics for Novel Materials in the Millimeter-Wave Regime?
150(4)
7.1.2 Underlying Theory of Operation and Time-Resolved Data: Treatment of Internal Fields in Samples
154(2)
7.1.3 Apparatus Design and Instrumentation
156(2)
7.1.4 Sensitivity Analysis and Dynamic Range
158(1)
7.1.5 Calibration Factor
159(3)
7.2 Studies on RF Responses of Materials
162(12)
7.2.1 Transmission and Reflection Response for GaAs
162(1)
7.2.2 Silicon Response by Resistivity
162(1)
7.2.2.1 Charge Carrier Concentration
165(1)
7.2.2.2 Millimeter-Wave Probe and Laser Data
166(1)
7.2.2.3 TR-mmWC Charge Dynamical Parameter Correlation Table and Sample-Resistivity
168(1)
7.2.2.4 Photoconductance (ΔG) Using Calculated Sensitivity
171(3)
7.3 CdS,Se1-x Nanowires
174(8)
7.3.1 Transmission and Reflection Response Spectra for CdX Nanowire
174(2)
7.3.2 Millimeter-Wave Signal Coherence and Decay Response of CdSxSe1-x Nanowire
176(6)
7.4 Conclusions
182(1)
7.5 Data: CdSxSe1-x TR-mmWC Responses for Various Pump Fluences
182(1)
Acknowledgments
183(1)
References
183(4)
8 Metal Nanoclusters
187(24)
Sayani Mukherjee
Sukhendu Mandal
8.1 Introduction
187(2)
8.2 Gold Nanoclusters
189(13)
8.2.1 Phosphine-protected Au-NCs
190(3)
8.2.2 Thiol-protected Nanoclusters
193(1)
8.2.2.1 Brust-Schiffrin Synthesis
193(1)
8.2.2.2 Modified Brust-Schiffrin Synthesis
194(1)
8.2.2.3 Size-focusing Method
197(1)
8.2.2.4 Ligand Exchange-induced Structural Transformation
200(2)
8.2.3 Other Ligands as Protecting Agents
202(1)
8.3 Mixed Metals Alloy Nanoclusters
202(1)
8.4 Conclusion
203(1)
8.5 Future Direction
203(1)
Acknowledgment
204(1)
References
204(7)
Part II Modeling and Simulation 211(50)
9 Simulations of Gas Separation by Adsorption
213(26)
Hawazin Alghamdi
Hind Aljaddani
Sidi Maiga
Silvina Gatica
9.1 Introduction
213(3)
9.2 Simulation Methods
216(4)
9.2.1 Molecular Dynamics Simulations
216(1)
9.2.2 Monte Carlo Simulations
217(1)
9.2.3 Ideal Adsorbed Solution Theory (IAST)
218(2)
9.3 Models
220(3)
9.3.1 Molecular Models
220(1)
9.3.2 Substrate Models
221(1)
9.3.3 Validation of the Methods and Force Fields
222(1)
9.4 Examples
223(13)
9.4.1 GCMC Simulation of CO2/CH4 Binary Mixtures on Nanoporous Carbons
223(1)
9.4.2 MD Simulations of CO2/CH4 Binary Mixtures on Graphene Nanoribbons/Graphite
224(4)
9.4.3 MD Simulations of H2O/N2 Binary Mixtures on Graphene
228(3)
9.4.4 Calculation of the Selectivity of CO2 and CH4 on Graphene Using the IAST
231(5)
9.5 Conclusion
236(1)
References
236(3)
10 Recent Advances in Weyl Semimetal (MnBi2Se4) and Axion Insulator (MnBi2Te4)
239(22)
Sugata Chowdhuty
Kevin F. Garrity
Francesca Tavazza
10.1 Introduction
239(2)
10.2 Discussion
241(11)
10.2.1 MBS
242(1)
10.2.2 MBT
243(9)
10.3 Outlook
252(1)
References
253(8)
Part III Applications 261(154)
11 Chemical Functionatization of Carbon Nanotubes and Applications to Sensors
263(24)
Khurshed Ahmad Shah
Muhammad Shunaid Parvaiz
11.1 Introduction
263(4)
11.2 Properties of Carbon Nanotubes
267(5)
11.2.1 Electrical Properties
267(2)
11.2.2 Mechanical Properties
269(1)
11.2.3 Optical Properties
269(2)
11.2.4 Physical Properties
271(1)
11.3 Properties of Functionalized Carbon Nanotubes
272(1)
11.3.1 Mechanical Properties
272(1)
11.3.2 Electrical Properties
272(1)
11.4 Types of Chemical Functionalization
273(1)
11.4.1 Thermally Activated Chemical Functionalization
273(1)
11.4.2 Electrochemical Functionalization
273(1)
11.4.3 Photochemical Functionalization
274(1)
11.5 Chemical Functionalization Techniques
274(2)
11.5.1 Chemical Techniques
274(1)
11.5.2 Electrons/Ions Irradiation Techniques
275(1)
11.5.3 Specialized Techniques
275(1)
11.6 Sensing Applications of Carbon Nanotubes
276(2)
11.6.1 Gas Sensors
276(1)
11.6.2 Biosensors
277(1)
11.6.3 Chemical Sensors
277(1)
11.6.4 Electrochemical Sensors
278(1)
11.6.5 Temperature Sensors
278(1)
11.6.6 Pressure Sensors
278(1)
11.7 Advantages and Disadvantages of Carbon Nanotube Sensors
278(1)
11.8 Summary
279(1)
References
280(7)
12 Graphene for Breakthroughs in Designing Next-Generation Energy Storage Systems
287(30)
Abhilash Ayyapan Nair
Manoj Muraleedharan Pillai
Sankaran Jayalekshmi
12.1 Introduction
287(2)
12.2 Li-Ion Cells
289(5)
12.2.1 Basic Working Mechanism
289(2)
12.2.2 Role of Graphene: Graphene Foam-Based Electrodes for Li-Ion Cells
291(3)
12.3 Li-S Cells
294(5)
12.3.1 Advantages of Li-S Cells
295(1)
12.3.2 Working of Li-S Cells
295(1)
12.3.3 Challenges of Li-S Cells
296(1)
12.3.4 Graphene-Based Sulfur Cathodes for Li-S Cells
297(1)
12.3.5 Graphene Oxide-Based Sulfur Cathodes for Li-S Cells
298(1)
12.4 Supercapacitors
299(7)
12.4.1 Basic Working Principle
299(1)
12.4.2 Graphene-Based Supercapacitor Electrodes
300(3)
12.4.3 Graphene/Polymer Composites as Electrodes
303(2)
12.4.4 Graphene/Metal Oxide Composite Electrodes
305(1)
12.5 Li-Ion Capacitors
306(4)
12.5.1 Working Principle
306(1)
12.5.2 Graphene/Graphene Composites as Cathode Materials
307(2)
12.5.3 Graphene/Graphene Composites as Anode Materials
309(1)
12.6 Looking Forward
310(1)
References
311(6)
13 Progress in Nanostructured Perovskite Photovoltaics
317(28)
Sreekanth Jayachandra Varma
Ramakrishnan Jayakrishnan
13.1 Introduction
317(1)
13.2 Nanostructured Perovskites as Efficient Photovoltaic Materials
318(3)
13.3 Perovskite Quantum Dots
321(3)
13.4 Perovskite Nanowires and Nanopillars
324(12)
13.4.1 2D Perovskite Nanostructures
326(4)
13.4.2 2D/3D Perovskite Heterostructures
330(6)
13.5 Summary
336(1)
References
336(9)
14 Applications of Nanomaterials in Nanomedicine
345(16)
Ayanna N. Woodberry
Francis E. Mensah
14.1 Introduction
345(1)
14.2 Nanomaterials, Definition, Historical Perspectives
345(6)
14.2.1 What Are Nanomaterials?
345(1)
14.2.2 Origin and Historical Perspectives
346(3)
14.2.3 Synthesis of Nanomaterials
349(1)
14.2.3.1 Inorganic Nanoparticles
349(2)
14.3 Nanomaterials and Their Use in Nanomedicine
351(5)
14.3.1 What Is Nanomedicine?
351(1)
14.3.2 The Myth of Small Molecules
351(1)
14.3.3 Nanomedicine Drug Delivery Has Implications that Go Beyond Medicine
351(1)
14.3.4 Improvement in Function
351(1)
14.3.5 Nanomaterials Use in Nanomedicine for Therapy
351(1)
14.3.5.1 Progress in Polymer Therapeutics as Nanomedicine
351(1)
14.3.5.2 Recent Progress in Polymer: Therapeutics as Nanomedicines
352(1)
14.3.5.3 Use of Linkers
354(1)
14.3.5.4 Targeting Moiety
354(1)
14.3.6 Polymeric Drugs
355(1)
14.3.7 Polymeric-Drug Conjugates
355(1)
14.3.8 Polymer-Protein Conjugates
356(1)
14.4 The Use of Nanomaterials in Global Health for the Treatment of Viral Infections Such As the DNA and the RNA Viruses, Retroviruses, Ebola, COVID-19
356(3)
14.4.1 Nanomaterials in Radiation Therapy
358(1)
14.5 Conclusion
359(1)
References
359(2)
15 Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries
361(54)
Quinton L. Williams
Adewale A. Adepoju
Sharah Zaab
Mohamed Doumbia
Yahya Alqahtani
Victoria Adebayo
15.1 Introduction
361(1)
15.2 Battery Background
362(13)
15.2.1 Genesis of the Rechargeable Battery
362(1)
15.2.2 Battery Cell Classifications
363(1)
15.2.2.1 Primary Batteries - Non-rechargeable Batteries
363(1)
15.2.2.2 Secondary Batteries - Rechargeable Batteries
363(1)
15.2.3 Comparison of Rechargeable Batteries
363(1)
15.2.4 Internal Battery Cell Components
364(1)
15.2.4.1 Cathode
365(1)
15.2.4.2 Anode
366(1)
15.2.4.3 Electrolyte
366(1)
15.2.5 Crystal Structure of Active Materials
366(1)
15.2.5.1 Layered LiCoO2
367(1)
15.2.5.2 Spinel LiM2O4
367(1)
15.2.5.3 Olivine LiFePO4
368(1)
15.2.5.4 NCM
369(1)
15.2.6 Principle of Operation of Li-Ion Batteries
370(1)
15.2.7 Battery Terminology
371(1)
15.2.7.1 Battery Safety
373(1)
15.2.8 A Glimpse into the Future of Battery Technology
374(1)
15.3 High C-Rate Performance of LiFePO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries
375(5)
15.3.1 Introduction
375(1)
15.3.2 Experimental
375(1)
15.3.2.1 Preparation of Composite Cathode
375(1)
15.3.2.2 Characterization
376(1)
15.3.3 Results and Discussion
376(3)
15.3.4 Summary
379(1)
15.4 Graphene Nanoplatelet Additives for High C-Rate LiFePO4 Battery Cathodes
380(6)
15.4.1 Introduction
380(1)
15.4.2 Experimental
381(1)
15.4.2.1 Composite Cathode Preparation and Battery Assembly
381(1)
15.4.2.2 Characterizations and Electrochemical Measurements
382(1)
15.4.3 Results and Discussion
382(4)
15.4.4 Summary
386(1)
15.5 LiFePO4 Battery Cathodes with PANI/CNF Additive
386(7)
15.5.1 Introduction
386(1)
15.5.2 Experimental
386(1)
15.5.2.1 Preparation of the PANI/CNF Conducting Agent and Coin Cell
387(1)
15.5.3 Results and Discussion
387(5)
15.5.4 Conclusion
392(1)
15.6 Reduced Graphene Oxide - LiFePO4 Composite Cathode for Li-Ion Batteries
393(5)
15.6.1 Introduction
393(1)
15.6.2 Experimental
394(1)
15.6.3 Results and Discussion
394(4)
15.6.4 Summary
398(1)
15.7 Rate Performance of Carbon Nanofiber Anode for Lithium-Ion Batteries
398(4)
15.7.1 Introduction
398(1)
15.7.2 Experimental
398(1)
15.7.3 Results and Discussion
399(2)
15.7.4 Summary
401(1)
15.8 NCM Batteries with the Addition of Carbon Nanofibers in the Cathode
402(5)
15.8.1 Introduction
402(1)
15.8.2 Experimental
403(1)
15.8.3 Results and Discussion
403(2)
15.8.4 Summary
405(2)
15.9 Conclusion
407(1)
Acknowledgments
407(1)
References
408(7)
Part IV Space Science 415(62)
16 Micro-Raman Imaging of Planetary Analogs: Nanoscale Characterization of Past and Current Processes
417(36)
Dina M. Bower
Ryan Jabukek
Marc D. Fries
Andrew Steele
16.1 Introduction
417(4)
16.2 Relationships Between Minerals
421(6)
16.2.1 Minerals in the Solar System
421(4)
16.2.2 Minerals as Indicators of Life and Habitability
425(2)
16.3 Planetary Analogs
427(4)
16.3.1 Modern Terrestrial Analogs
427(2)
16.3.2 Ancient Terrestrial Analogs
429(2)
16.4 Meteorites and Lunar Rocks
431(3)
16.5 Carbon
434(5)
16.5.1 Definition and Description of Macromolecular Carbon
434(1)
16.5.2 Macromolecular Carbon on the Earth and in Astromaterials
435(2)
16.5.3 Macromolecular Carbon in Petrographic Context
437(2)
16.6 Conclusion
439(1)
References
439(14)
17 Machine Learning and Nanomaterials for Space Applications
453(24)
Eric Lyness
Victoria Da Poian
James Mackinnon
17.1 Introduction to Artificial Intelligence and Machine Learning
453(4)
17.1.1 What Do We Mean by Artificial Intelligence and Machine Learning?
454(1)
17.1.2 The Field of Data Analysis and Data Science
455(1)
17.1.2.1 Data Analysis
455(1)
17.1.2.2 Data Science
455(1)
17.1.3 Applications in Nanoscience
456(1)
17.2 Machine Learning Methods and Tools
457(7)
17.2.1 Types of ML
457(1)
17.2.1.1 Supervised
457(1)
17.2.1.2 Unsupervised
459(1)
17.2.1.3 Semi-supervised
460(1)
17.2.1.4 Reinforcement Learning
460(1)
17.2.2 The Basic Techniques and the Underlying Algorithms
460(1)
17.2.2.1 Regression (Linear, Logistic)
460(1)
17.2.2.2 Decision Tree
461(1)
17.2.2.3 Neural Networks
461(1)
17.2.2.4 Expert Systems
463(1)
17.2.2.5 Dimensionality Reduction
463(1)
17.2.3 Available Tools: Discussion of the Software Available, Both Free and Commercial, How They Can Be Used by Nonexperts
464(1)
17.3 Limitations of AI
464(2)
17.3.1 Data Availability
464(1)
17.3.1.1 Splitting Your Dataset
464(1)
17.3.2 Warnings in Implementation (Overfitting, Cross-validation)
465(1)
17.3.3 Computational Power
465(1)
17.4 Case Study: Autonomous Machine Learning Applied to Space Applications
466(2)
17.4.1 Few Existing AI Applications for Planetary Missions
466(1)
17.4.2 MOMA Use-Case Project (Leaning Toward Science Autonomy)
467(1)
17.5 Challenges and Approaches to Miniaturized Autonomy
468(5)
17.5.1 Computing Requirements of AI/Machine Learning
468(1)
17.5.2 Why Is Space Hard?
469(2)
17.5.3 Software Approaches for Embedded Hardware
471(2)
17.6 Summary: How to Approach AI
473(1)
References
474(3)
Index 477
Prabhakar Misra, PhD, is a Professor in the Department of Physics and Astronomy at Howard University in Washington, DC. He has over 30 years of experience researching the detection and spectroscopic characterization of jet-cooled free radicals, ions and stable molecules of relevance to combustion phenomena and plasmas, Raman spectroscopy and Molecular Dynamics simulation of nanomaterials for gas-sensing applications, and other contemporary areas in experimental atomic and molecular physics and condensed matter physics.