Muutke küpsiste eelistusi

E-raamat: Spectrum Sharing: The Next Frontier in Wireless Networks

  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 13-Mar-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119551478
  • Formaat - PDF+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 13-Mar-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119551478

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint

Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing.

Beginning with the historic form of cognitive radio, Spectrum Sharing: The Next Frontier in Wireless Networks continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more.

  • Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA)
  • Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems)
  • Includes substantial trials and experimental results, as well as system-level performance evaluation results
  • Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing
  • Edited by experts in the field, and featuring contributions by respected professionals in the field world wide

Spectrum Sharing: The Next Frontier in Wireless Networks is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.

 

About the Editors xvii
List of Contributors
xxi
Preface xxv
Abbreviations xxix
1 Introduction: From Cognitive Radio to Modern Spectrum Sharing
1(16)
Constantinos B. Papadias
Tharmalingam Ratnarajah
Dirk T.M. Slock
1.1 A Brief History of Spectrum Sharing
1(2)
1.2 Background
3(2)
1.3 Book overview
5(9)
1.4 Summary
14(3)
2 Regulation and Standardization Activities Related to Spectrum Sharing
17(18)
Markus Mueck
Maria Dolores (Lola) Perez Guirao
Rao Yallapragada
Srikathyayani Srikanteswara
2.1 Introduction
17(2)
2.2 Standardization
19(9)
2.2.1 Licensed Shared Access
19(2)
2.2.2 Evolved Licensed Shared Access
21(3)
2.2.3 Citizen Broadband Radio System
24(1)
2.2.4 CBRS Alliance
25(3)
2.3 Regulation
28(7)
2.3.1 European Conference of Postal and Telecommunications Administrations
28(1)
2.3.2 Federal Communications Commission
29(1)
2.3.3 A Comparison: (e)LSA vs CBRS Regulation Framework
30(1)
2.3.4 Conclusion
31(1)
References
32(3)
3 White Spaces and Database-assisted Spectrum Sharing
35(24)
Andrew Stirling
3.1 Introduction
35(1)
3.2 Demand for Spectrum Outstrips Supply
36(2)
3.2.1 Making Room for New Wireless Technology
36(1)
3.2.2 Unused Spectrum
37(1)
3.3 Three-tier Access Model
38(2)
3.3.1 Secondary Users: Exploiting Gaps left by Primary Users
39(1)
3.3.2 Passive Users: Vulnerable to Transmissions in White Space Frequencies
39(1)
3.3.3 Opportunistic Spectrum Users
40(1)
3.4 What is Efficient Use of Spectrum?
40(3)
3.4.1 Broadcasters prefer Large Coverage Areas with Lower Spectrum Reuse
41(1)
3.4.2 ISPs Respond to Growing Bandwidth Demand from Subscribers
41(1)
3.4.3 Protection of Primary Users Defines the Scope for Sharing
42(1)
3.5 Tapping Unused Capacity: the Evolution of Spectrum Sharing
43(5)
3.5.1 Traditional Coordination is a Slow and Expensive Process
44(1)
3.5.2 License-exempt Access as the Default Spectrum Sharing Mechanism
44(1)
3.5.3 DSA offers Lower Friction and more Scalability
45(1)
3.5.3.1 Early days of DSA
46(1)
3.5.3.2 CR: Towards Flexible, Adaptive, Ad Hoc Access
46(1)
3.5.4 Spectrum Databases are Preferred by Regulators
47(1)
3.6 Determining which Frequencies are Available to Share: Technology
48(5)
3.6.1 CR: Its Original Sense
48(1)
3.6.2 DSA is more Pragmatic and Immediately Applicable
48(1)
3.6.3 Spectrum Sensing
48(1)
3.6.3.1 Hidden Nodes: Limiting the Scope/Certainty of Sensing
49(1)
3.6.3.2 Overcoming the Hidden Node Problem: a Cooperative Approach
49(1)
3.6.4 Beacons
50(1)
3.6.5 Spectrum Databases used with Device Geolocation
51(2)
3.7 Implementing Flexible Spectrum Access
53(1)
3.7.1 Software-defined Radio Underpins Flexibility
53(1)
3.7.2 Regulation Needs to Adapt to the New Flexibility in Radio Devices
54(1)
3.8 Foundations for More Flexible Access in the Future
54(5)
3.8.1 Finer-grained Spectrum Access Management
54(1)
3.8.2 More Flexible License Exemption
54(1)
3.8.2.1 Towards a UHF Spectrum Commons or Superhighway
55(1)
References
56(1)
Further Reading
57(2)
4 Evolving Spectrum Sharing Methods, Standards and Trials: TVWS, CBRS, MulteFire and More
59(16)
Dani Anderson
K.A. Shruthi
David Crawford
Robert W. Stewart
4.1 Introduction
59(1)
4.2 TV White Space
59(7)
4.2.1 Overview
59(2)
4.2.2 Operating Standards
61(2)
4.2.3 Overview of TVWS Trials and Projects
63(3)
4.3 Emerging Shared Spectrum Technologies
66(7)
4.3.1 Introduction
66(1)
4.3.2 CBRS
67(3)
4.3.3 Other Shared Spectrum LTE Solutions
70(3)
4.4 Conclusion
73(2)
References
73(2)
5 Spectrum Above Radio Bands
75(22)
Abhishek K. Gupta
Adrish Banerjee
5.1 Introduction and Motivation for mmWave
75(1)
5.2 mmWave Communication: What is Different?
76(2)
5.2.1 Distinguishing Features
76(1)
5.2.2 Implications
76(1)
5.2.3 Opportunity and Need for Sharing
77(1)
5.3 Bands in Above-6 GHz Spectrum
78(2)
5.3.1 26-GHz band: 24.25--27.5 GHz
79(1)
5.3.2 28-GHz band: 27.5--29.5 GHz
79(1)
5.3.3 32-GHz band: 31.8--33.4 GHz
79(1)
5.3.4 40-GHz band: 37--43.5 GHz
79(1)
5.3.4.1 40-GHz lower band
80(1)
5.3.4.2 40-GHz upper band
80(1)
5.3.5 64-71-GHz band
80(1)
5.4 Spectrum Sharing over mmWave Bands
80(4)
5.4.1 Factors Determining Sharing vs No Sharing
80(1)
5.4.1.1 Directionality
81(1)
5.4.1.2 Deployment and Blockage Density
81(1)
5.4.1.3 Traffic Characteristics
82(1)
5.4.1.4 Amount of Sharing
82(1)
5.4.1.5 Inter-operator Coordination
82(1)
5.4.1.6 Sharing of Other Resources
83(1)
5.4.1.7 Multi-user Communication
84(1)
5.4.1.8 Technical vs Financial Gains
84(1)
5.5 Spectrum Sharing Options for mmWave Bands
84(9)
5.5.1 Exclusive Licensing
84(1)
5.5.2 Unlicensed Spectrum
85(1)
5.5.2.1 Hybrid Spectrum Access
86(1)
5.5.3 Spectrum License Sharing
87(1)
5.5.3.1 Uncoordinated Sharing of Spectrum Licenses
87(1)
5.5.3.2 Restricted Sharing of Spectrum Licenses
88(2)
5.5.4 Shared Licenses
90(1)
5.5.4.1 Spectrum Pooling
90(1)
5.5.4.2 Partial or Fully Coordinated
90(1)
5.5.4.3 Common Database
91(1)
5.5.4.4 Sensing/D2D Communication-based Coordination
91(1)
5.5.5 Secondary Licenses and Markets
91(1)
5.5.5.1 Primary/Secondary Markets
92(1)
5.5.5.2 Third-party Markets
92(1)
5.5.6 Increasing the utilization of spectrum
92(1)
5.6 Conclusions
93(4)
References
93(4)
6 The Licensed Shared Access Approach
97(24)
Antonio J. Morgado
6.1 Introduction to Spectrum Management
97(1)
6.2 The Dawn of Licensed Shared Access
98(5)
6.2.1 The LSA Regulatory Environment
99(2)
6.2.2 LSA/ASA in the 2300--2400 MHz band
101(2)
6.3 An Improved LSA Network Architecture
103(3)
6.4 Operation of the Improved Architecture in Dynamic LSA Use Cases
106(9)
6.4.1 Railway Scenario
107(2)
6.4.2 Macro-cellular Scenario
109(3)
6.4.3 Small Cell Scenario
112(3)
6.5 Summary
115(6)
References
116(5)
7 Collaborative Sensing Techniques
121(26)
Christian Steffens
Marius Pesavento
7.1 Sparse Signal Representation
123(2)
7.2 Sparse Sensing
125(3)
7.3 Collaborative Sparse Sensing
128(6)
7.3.1 Coherent Sparse Reconstruction
129(2)
7.3.2 Non-Coherent Sparse Reconstruction
131(3)
7.4 Estimation Performance
134(4)
7.4.1 Comparison of Centralized, Distributed, and Collaborative Sensing
134(2)
7.4.2 Source Localization
136(2)
7.5 Concluding Remarks
138(9)
References
139(8)
8 Cooperative Communication Techniques for Spectrum Sharing
147(22)
Faheem Khan
Miltiades C. Filippou
Mathini Sellathurai
8.1 Introduction
147(2)
8.2 Distributed Precoding Exploiting Commonly Available Statistical CSIT for Efficient Coordination
149(6)
8.2.1 Problem Formulation
150(1)
8.2.2 Distributed Statistically Coordinated Precoding
151(2)
8.2.3 Performance Evaluation
153(2)
8.3 A Statistical Channel and Primary Traffic-aware Cooperation Framework for Optimal Service Coexistence
155(9)
8.3.1 Joint Design of Spectrum Sensing and Reception for a SIMO Hybrid CR System
156(2)
8.3.1.1 Problem Formulation and Solution Framework
158(1)
8.3.1.2 Performance Evaluation
159(2)
8.3.2 Throughput Performance of Sensing-optimized Hybrid MIMO CR Systems
161(1)
8.3.2.1 Problem Formulation and Solution Framework
161(1)
8.3.2.2 Performance Evaluation
162(2)
8.4 Summary
164(5)
References
165(4)
9 Reciprocity-Based Beamforming Techniques for Spectrum Sharing in MIMO Networks
169(22)
Kalyana Gopala
Dirk T.M. Slock
9.1 Multi-antenna Cognitive Radio Paradigms
169(2)
9.1.1 Spatial Overlay: MISO/MIMO Interference Channel
170(1)
9.1.2 Spatial Underlay
170(1)
9.1.3 Spatial Interweave
170(1)
9.2 From Multi-antenna Underlay to LSA Coordinated Beamforming
171(4)
9.2.1 CoBF and CSIT Discussion
171(2)
9.2.2 Some LoS Results
173(1)
9.2.3 Noncoherent Multi-user MIMO Communications using Covariance CSIT
174(1)
9.3 TDD Reciprocity Calibration
175(7)
9.3.1 Fundamentals
175(3)
9.3.2 Diagonality of the Calibration Matrix
178(1)
9.3.3 Coherent and Non-coherent Calibration Scheme
178(1)
9.3.4 UE-aided vs Internal Calibration
179(1)
9.3.5 Group Calibration System Model
179(2)
9.3.6 Least-squares Solution
181(1)
9.3.7 A Bilinear Model
181(1)
9.4 MIMO IBC Beamformer Design
182(2)
9.4.1 System Model
182(1)
9.4.2 WSR Optimization via WSMSE
182(1)
9.4.3 Naive UL/DL Duality-based Beamformer Exploiting Reciprocity
183(1)
9.5 Experimental Validation
184(4)
9.6 Conclusions
188(3)
References
188(3)
10 Spectrum Sharing with Full Duplex
191(22)
Sudip Biswas
Ali Cagatay Cirik
Miltiades C. Filippou
Tharmalingam Ratnarajah
10.1 Introduction
191(1)
10.2 Transceiver Design for an FD MIMO CR Cellular Network
192(11)
10.2.1 System Model
192(1)
10.2.1.1 Signal and Channel Model
192(2)
10.2.1.2 SI Cancellation
194(1)
10.2.1.3 MSEofthe Received Data Stream
195(1)
10.2.2 Joint Transceiver Design
196(1)
10.2.3 Imperfect CSI and Robust Design
197(1)
10.2.3.1 CSI Acquisition
197(1)
10.2.3.2 CSI Modeling
198(1)
10.2.3.3 Robust Transceiver Design
198(2)
10.2.4 Numerical Results
200(3)
10.3 Transceiver Design for an FD MIMO IoT Network
203(6)
10.3.1 System Model
204(1)
10.3.1.1 Signal and Channel Model
204(1)
10.3.1.2 SI Cancellation
205(1)
10.3.1.3 MSE of the Received Data Stream
206(1)
10.3.2 Joint Transceiver Design
206(1)
10.3.3 Imperfect CSI and Robust Design
207(1)
10.3.4 Numerical Results
208(1)
10.4 Summary
209(4)
References
210(1)
Appendix for
Chapter 10
211(1)
10.A.1 Useful lemmas
211(2)
11 Communication and Radar Systems: Spectral Coexistence and Beyond
213(16)
Fan Liu
Christos Masouros
11.1 Background and Applications
213(1)
11.1.1 Civilian Applications
213(1)
11.1.2 Military Applications
214(1)
11.2 Radar Basics
214(2)
11.3 Radar Communication Coexistence
216(5)
11.3.1 Opportunistic Access
216(1)
11.3.2 Precoding Designs
216(1)
11.3.2.1 Interfering Channel Estimation
216(2)
11.3.2.2 Closed-form Precoding
218(1)
11.3.2.3 Optimization-based Precoding
219(2)
11.4 Dual-functional Radar Communication Systems
221(1)
11.4.1 Temporal and Spectral Processing
221(1)
11.4.2 Spatial Processing
222(3)
11.5 Summary and Open Problems
225(1)
References
226(3)
12 The Role of Antenna Arrays in Spectrum Sharing
229(1)
Constantinos B. Papadias
Konstantinos Ntougias
Georgios K. Papageorgiou
12.1 Introduction
229(1)
12.2 Spectrum Sharing
229(4)
12.2.1 Spectrum Sharing from a Physical Viewpoint
229(2)
12.2.2 Spectrum Sharing from a Regulatory Viewpoint
231(2)
12.3 Attributes of Antenna Arrays
233(1)
12.4 Impact of Arrays on Spectrum Sharing
234(1)
12.4.1 Spectrum Sensing
234(1)
12.4.2 Shared Spectrum Access
234(1)
12.5 Antenna-Array-Aided Spectrum Sharing
235(10)
12.5.1 System Setup
235(1)
12.5.2 Assumptions
236(1)
12.5.3 System Model
237(1)
12.5.3.1 Secondary System
237(1)
12.5.3.2 Primary System
238(1)
12.5.4 Problem Formulation
238(1)
12.5.4.1 Sum-SE, SE, and SINR
238(1)
12.5.4.2 Transmission Constraints
239(1)
12.5.4.3 Original Optimization Problem
239(1)
12.5.4.4 Relaxed Optimization Problem
240(2)
12.5.5 Solution and Algorithm
242(1)
12.5.5.1 Solution for Other Linear Precoding Schemes
242(1)
12.5.6 Performance Evaluation via Numerical Simulations
243(2)
12.6 Antenna-Array-Aided Spectrum Sensing
245(8)
12.6.1 Printed Yagi-Uda Arrays and Hex-Antenna Nodes
246(2)
12.6.2 Test Setup
248(1)
12.6.3 Collaborative Spectrum Sensing Techniques
249(1)
12.6.4 Experimental Results
250(3)
12.6.4.1 Detection in High SNR
253(1)
12.6.4.2 Detection in Low SNR
253(1)
12.7 Summary and Conclusions
253(4)
Acknowledgments
253(1)
References
254(3)
13 Resource Allocation for Shared Spectrum Networks
257(22)
Eduard A. Jorswieck
M. Majid Butt
13.1 Introduction
257(2)
13.2 Information-theoretic Background
259(2)
13.3 Types of Spectrum Sharing
261(2)
13.4 Resource Allocation for Efficient Spectrum Sharing
263(7)
13.4.1 Multi-objective Programming
263(2)
13.4.2 Resource Allocation Games
265(2)
13.4.3 Resource Matching for Spectrum Sharing
267(3)
13.5 Resource and Spectrum Trading
270(5)
13.6 Conclusions and Future Work
275(4)
References
275(4)
14 Unlicensed Spectrum Access in 3GPP
279(26)
Daniela Laselva
David Lopez Perez
Mika Rinne
Tero Henttonen
Claudio Rosa
Markku Kuusela
14.1 Introduction
279(1)
14.2 LTE-WLAN Aggregation at the PDCP Layer
280(4)
14.2.1 User Plane Radio Protocol Architecture
281(1)
14.2.2 Bearer Type and Aggregation
282(1)
14.2.3 Flow Control Schemes
283(1)
14.3 LTE-WLAN Integration at IP Layer
284(3)
14.3.1 User Plane Radio Protocol Architecture
284(2)
14.3.2 Flow Control Schemes
286(1)
14.4 LTE in Unlicensed Band
287(7)
14.4.1 Spectrum and Regulations
287(1)
14.4.2 Channel Access
288(1)
14.4.3 Frame Structure
289(1)
14.4.4 Discovery Reference Signal and RRM
290(1)
14.4.5 Uplink Enhancements
291(3)
14.5 Performance Evaluation
294(7)
14.5.1 Aggregation Gains of LWA and LWIP
294(4)
14.5.2 Performance Advantages of LAA
298(3)
14.6 Future Technologies
301(1)
14.6.15 G New Radio in Unlicensed Band
301(1)
14.6.2 The Role of WLAN in the 5G System
302(1)
14.7 Conclusions
302(3)
References
303(2)
15 Performance Analysis of Spatial Spectrum Reuse in Ultradense Networks
305(16)
Youjia Chen
Ming Ding
David Lopez-Perez
15.1 Introduction
305(1)
15.2 Network Scenario and System Model
306(2)
15.2.1 Network Scenario
306(1)
15.2.2 Wireless System Model
307(1)
15.3 Performance Analysis of Full Spectrum Reuse Network
308(4)
15.3.1 The Coverage Probability
308(3)
15.3.2 The Area Spectral Efficiency
311(1)
15.4 Performance with Multi-channel Spectrum Reuse
312(1)
15.5 Simulation and Discussion
312(4)
15.5.1 Performance with Full Spectrum Reuse Strategy
313(1)
15.5.2 Performance with Multi-channel Spectrum Reuse Strategy
314(2)
15.6 Conclusion
316(5)
Appendix for
Chapter 15
316(1)
15.A.1 Proof of Lemma 15.1
316(1)
15.A.2 Proof of Lemma 15.2
317(1)
15.A.3 Proof of Theorem 15.1
318(1)
References
318(3)
16 Large-scale Wireless Spectrum Monitoring: Challenges and Solutions based on Machine Learning
321(20)
Sreeraj Rajendran
Sofie Pollin
16.1 Challenges
321(2)
16.2 Crowdsourcing
323(1)
16.3 Wireless Spectrum Analysis
324(11)
16.3.1 Anomaly Detection
324(4)
16.3.2 Performance Comparisons
328(3)
16.3.3 Wireless Signal Classification
331(1)
16.3.3.1 Fully Supervised Models
331(1)
16.3.3.2 Semi-supervised Models
332(1)
16.3.3.3 Performance-friendly Models
333(2)
16.4 Future Research Directions
335(2)
16.4.1 Machine Learning
336(1)
16.4.2 Anomaly Geo-localization
336(1)
16.4.3 Crowd Engagement and Sustainability
336(1)
16.5 Conclusion
337(4)
References
337(4)
17 Policy Enforcement in Dynamic Spectrum Sharing
341(20)
Jung-Min (Jerry) Park
Vireshwar Kumar
Taiwo Oyedare
17.1 Introduction
341(1)
17.2 Technical Background
342(1)
17.3 Security and Privacy Threats
343(4)
17.3.1 Sensing-driven Spectrum Sharing
343(1)
17.3.1.1 PHY-layer Threats
344(1)
17.3.1.2 MAC-layer Threats
344(1)
17.3.1.3 Cross-layer Threats
345(1)
17.3.2 Database-driven Spectrum Sharing
345(1)
17.3.2.1 PHY-layer Threats
346(1)
17.3.2.2 Threats to the Database Access Protocol
346(1)
17.3.2.3 Threats to the Privacy of Users
346(1)
17.4 Enforcement Approaches
347(7)
17.4.1 Ex Ante (Preventive) Approaches
348(1)
17.4.1.1 Device Hardening
348(2)
17.4.1.2 Network Hardening
350(1)
17.4.1.3 Privacy Preservation
351(1)
17.4.2 Ex Post (Punitive) Approaches
352(1)
17.4.2.1 Spectrum Monitoring
352(1)
17.4.2.2 Spectrum Forensics
352(1)
17.4.2.3 Localization
353(1)
17.4.2.4 Punishment
353(1)
17.5 Open Problems
354(1)
17.5.1 Research Challenges
354(1)
17.5.2 Regulatory Challenges
354(1)
17.6 Summary
355(6)
References
355(6)
18 Economics of Spectrum Sharing, Valuation, and Secondary Markets
361(28)
William Lehr
18.1 Introduction
361(2)
18.2 Spectrum Scarcity, Regulation, and Market Trends
363(7)
18.3 Estimating Spectrum Values
370(3)
18.4 Growing Demand for Spectrum
373(2)
18.5 5G Future and Spectrum Economics
375(6)
18.6 Secondary Markets and Sharing
381(3)
18.7 Conclusion
384(5)
References
385(4)
19 The Future Outlook for Spectrum Sharing
389(16)
Richard Womersley
19.1 Introduction
389(1)
19.2 Share and Share Alike
390(3)
19.3 Regulators Recognize the Value of Shared Access
393(2)
19.4 The True Demand for Spectrum
395(2)
19.5 The Impact of Sharing on Spectrum Demand
397(2)
19.6 General Authorization needed to Encourage Sharing
399(2)
19.7 The Long-term Outlook for Spectrum Sharing
401(4)
References
403(2)
Index 405
Constantinos B. Papadias, PhD, is Executive Director of Research, Technology and Innovation Network at The American College of Greece, Athens, Greece.

Tharmalingam Ratnarajah, PhD, is a Professor in Digital Communications and Signal Processing and Head of the Institute for Digital Communications at the University of Edinburgh, UK.

Dirk T.M. Slock, PhD, teaches Statistical Signal Processing (SSP) and signal processing techniques for wireless communications at EURECOM in France.