Muutke küpsiste eelistusi

E-raamat: Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Topics in Applied Physics 110
  • Ilmumisaeg: 26-Jul-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540445029
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 308,13 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Topics in Applied Physics 110
  • Ilmumisaeg: 26-Jul-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540445029
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Earlier books on this subject, i.e. "Sputtering by Particle Bombardment I - III" are nearly 20 years old, but since then a lot of new and important work has been performed and published in international journals. The planned book brings an overview about all the new results. This concerns especially a new summary of the measured and calculated sputtering yields with an algebraic approximation formula for the energy and angular dependence of the yields. This is especially useful for all colleagues, who need sputtering yields for physics and/or applied problems. The computational methods for calculating sputtering yields are critically reviewed, Molecular dynamics calculations have not been covered in the previous books on sputtering. The influence of chemical effects on sputtering and the new models developed in the last years for understanding these effects, such as for hydrogen ion bombardment of carbon, are outlined. New developments, such as sputtering by MeV Ions and the mechanisms for understanding the effects are presented. The new results about the angular and energy distributions of sputtered atoms are presented in an extra chapter.
Introduction and Overview
Rainer Behrisch and Wolfgang Eckstein
1
1 Overview
1
2 The Sputtering Yield
3
3 Distributions of Sputtered Particles
4
4 Surface Topography
4
5 Sputtering Calculations
7
5.1 Analytic Theory
7
5.2 Computer Calculations
8
6 Sputtering Measurements
9
7 Applications of Sputtering
11
8 Summary, Conclusions
12
References
12
Index
19
Computer Simulation of the Sputtering Process
Wolfgang Eckstein and Herbert M. Urbassek
21
1 Programs Based on the Binary Collision Approximation
21
1.1 The Binary Collision
22
1.2 The Interaction Potential for BCA
22
1.3 The Inelastic (Electronic) Energy Loss
23
1.4 The Surface Binding Energy
24
1.5 Problems of the Concept of BCA
24
1.6 Dynamic Monte Carlo Programs
24
1.7 Advantages of BCA Programs
25
2 Programs Based on Molecular Dynamics
25
2.1 Physics Input: Forces
25
2.1.1 Interatomic Potentials
25
2.1.2 Electrons
26
2.2 Technical Considerations
27
2.2.1 System Size
27
2.2.2 Boundary Conditions
27
2.2.3 Initial State
27
2.2.4 Sputtering
28
2.2.5 Simulation Time
28
2.3 Reliability
28
References
29
Index
31
Sputtering Yields
Wolfgang Eckstein
33
1 Experimental Methods
33
2 Calculational Methods
35
3 Mono-Atomic Targets
37
3.1 Energy Dependence of the Sputtering Yield at Normal Incidence
37
3.2 Fitting
38
3.3 Comparison of Calculated Values with Experimental Data
40
3.4 Angle of Incidence Dependence of the Sputtering Yield
101
3.5 Threshold Energy of Sputtering
125
4 Single Crystalline Materials
125
5 Multicomponent Targets
126
5.1 Fluence Dependence
127
5.2 Oscillations in the Partial Sputtering Yields
128
5.3 Sputtering of Compounds
129
5.4 Isotope Sputtering
130
6 Temperature Dependence of the Sputtering Yield
131
7 Yield Fluctuations
132
8 Time Evolution of the Sputtering Yield
133
9 Conclusions
133
References
171
Index
186
Results of Molecular Dynamics Calculations
Herbert M. Urbassek
189
1 Introduction
189
2 Linear-Cascade Regime
191
2.1 Low-Energy Sputtering
193
2.2 Preferential Sputtering
193
3 Ionic Crystals
196
4 Effect of Electronic Energy Loss and Electronic Excitations in Atomic Collision Cascades
197
4.1 Stopping
198
4.2 Excitation
198
5 High-Energy-Density (Spike) Phenomena
198
5.1 Sputtering from Fast-Ion-Induced Tracks
200
5.2 Cluster Impact
201
5.2.1 Small Cluster Impact (n less than or = to 3) 202
5.2.2 Larger Cluster Impact (n > or = to 3)
202
5.2.3 Cluster-Induced Surface Smoothing
204
6 Cluster Emission
204
7 Surface Topography Formation
208
7.1 Surface Vacancy and Adatom Production
209
7.2 Crater Production
210
8 Effects of Surface Topography on Sputtering
211
8.1 Effect of Surface Steps on Sputtering
212
9 Fluence Dependence of Sputtering
215
10 Sputtering of Molecular and Organic Solids
216
10.1 Diatomic and Small Anorganic Molecular Solids
216
10.2 Sputtering of Organic Solids
217
10.3 Sputtering of Polymers
217
11 Chemical Effects
218
12 Conclusions
219
References
220
Index
227
Energy and Angular Distributions of Sputtered Species
Hubert Gnaser
231
1 Introduction
231
2 Theoretical Concepts
233
2.1 Energy Dissipation, Recoil Generation, and Sputtering
233
2.2 Surface Binding Energy
236
3 Experimental Techniques
237
3.1 Post-Ionization of Sputtered Neutrals
237
3.2 Methods for the Determination of Energy Spectra
238
3.2.1 Electrostatic Energy Analysis
238
3.2.2 Fluorescence Techniques
239
3.2.3 Time-of-Flight Measurements
240
3.3 Methods for Angular Distribution Measurement,
241
4 Energy and Angular Distributions in the Linear-Cascade Regime
244
4.1 Energy Spectra from Metals, Semiconductors, and Organic Materials
245
4.1.1 Energy Spectra of Ground- and Excited-State Atoms, and of Ions
245
4.1.2 Energy Distributions of Atoms Sputtered from Alloys
252
4.1.3 Energy Spectra of Sputtered Molecules
254
4.2 Energy Spectra from Alkali Halides and Condensed Gases
269
4.2.1 Alkali Halides and Related Materials
269
4.2.2 Condensed Gases
271
4.3 Angular Distribution of Sputtered Species
275
4.3.1 Angular Distributions from Amorphous and Polycrystalline Targets
275
4.3.2 Angular Spectra from Single Crystals
277
4.3.3 Angular Distributions from Multicomponent Targets
280
5 Energy and Angular Distributions in the Single-Knockon Regime
283
5.1 Energy Spectra and Direct Recoils
285
5.1.1 Normal Incidence Bombardment
285
5.1.2 Oblique Incidence Bombardment
288
5.2 Angular Distributions at Low-Energy Irradiation
291
6 Energy and Angular Spectra from High-Density Cascades
293
6.1 Cluster-Ion Bombardment
293
6.2 Yield Enhancement under Cluster Impact
294
6.3 Energy Distributions under Cluster Bombardment
295
6.4 Angular Distributions under Cluster Irradiation
298
7 Summary
300
References
301
Index
323
Chemical Sputtering
Wolfgang Jacob and Joachim Roth
329
1 Introduction
329
2 Chemical Effects in Sputtering
330
3 Definitions
332
3.1 Physical Sputtering
332
3.2 Chemical Erosion
333
3.3 Chemical Sputtering
333
4 Experimental Methods
334
4.1 Weight Loss
335
4.2 Mass Spectrometry
335
4.3 Ellipsometry
339
4.4 Optical Emission Spectroscopy
339
4.5 Cavity Probes
340
4.6 Dedicated Multiple Beam Experiments
340
5 Chemical Erosion of Carbon by Atomic Hydrogen
342
5.1 Thermal Process
342
5.2 Species Released by Chemical Erosion
345
6 Chemical Sputtering
348
6.1 Chemical Sputtering with Reactive Ions
349
6.1.1 Temperature Dependence
349
6.1.2 Energy Dependence
350
6.1.3 Dependence on the Type of Graphite
354
6.1.4 Flux Dependence
355
6.1.5 Identification of Species Released by Chemical Sputtering
356
6.2 Combined Irradiation with Noble Gas Ions and Hydrogen Atoms
359
6.3 Effect of Doping
364
6.4 Chemical Sputtering with Molecular Ions at Low Energies
365
6.5 Summary of Experimental Results
367
7 Mechanisms and Modelling for Chemical Sputtering
369
7.1 Empirical Analytic Description
369
7.1.1 Radiation Damage
369
7.1.2 Low-temperature Near-surface Process, Y surf
370
7.1.3 Empirical Roth–Garcia-Rosales Formula
371
7.1.4 Comparison with Erosion Data
372
7.1.5 Extrapolation to Thermal Energies
373
7.2 Chemical Sputtering Model by Hopf
374
7.3 Molecular Dynamics Simulations
377
7.4 Isotope Effect
380
7.5 Effects due to Out-diffusion of Hydrocarbons
382
7.6 Summary
383
8 Chemical Sputtering with Other Reactive Species
384
8.1 Oxygen
384
8.2 Nitrogen
386
8.3 Fluorine
389
References
389
Index
399
Electronic Sputtering with Swift Heavy Ions
Walter Assmann, Marcel Toulemonde, and Christina Trautmann
401
1 Introduction
401
2 Sputtering Experiments
406
2.1 Special Problems in High-Energy Sputtering
406
2.2 Measuring Techniques for Sputtering Yields
407
2.3 Angular Distribution, Total Yield, and Fluence Effect
410
2.4 Experimental Arrangements
411
3 Experimental Results
416
3.1 Dependence of Sputtering Yield on Charge State of Incoming Ions
416
3.2 Dependence of Sputtering Yield on Angle of Beam Incidence
416
3.3 Metallic Materials
417
3.3.1 Angular Distribution of Sputtered Particles for Metallic Targets
418
3.3.2 Total Sputtering Yields for Metallic Targets
418
3.4 Insulating Oxides
421
3.4.1 Angular Distributions of Sputtered Particles for Oxides
421
3.4.2 Total Sputtering Yields for Oxides
422
3.5 Ionic Insulators
423
3.5.1 Angular Distributions of Sputtered Particles for Ionic Crystals
423
3.5.2 Total Sputtering Yields for Ionic Crystals
426
3.6 Summary of Experimental Sputtering Data of Different Materials
426
4 Calculations Based on the Inelastic Thermal Spike Model
428
4.1 Application to Metals
434
4.2 Application to Insulators
437
4.3 Thermal Spike Conclusion
439
5 Concluding Remarks and Outlook
440
References
442
Index
449
Author Index 461