Muutke küpsiste eelistusi

E-raamat: Square Roots of Elliptic Systems in Locally Uniform Domains

  • Formaat - EPUB+DRM
  • Hind: 148,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to comprehend. The centerpiece of the book is the solution to Kato's square root problem on locally uniform domains. The Kato result is complemented by corresponding $L^p$ bounds in natural intervals of integrability parameters.
This book will be useful to researchers in harmonic analysis, functional analysis and related areas.

Arvustused

Addressing non-smoothness has been a significant focus in the analysis of partial differential equations and other branches of analysis over the past few decades. This book, which evolved from the author's PhD thesis, presents their contributions to the field in a streamlined manner. This book delves deeply into these themes and provides state-of-the-art results for square roots of elliptic systems in locally uniform domains. (Lubomira G. Softova, Mathematical Reviews, June, 2025)

Introduction.- Locally uniform domains.- A density result for locally
uniform domains.- Sobolev extension operator.- A short account on sectorial
and bisectorial operators.- Elliptic systems in divergence form.- Porous
sets.- Sobolev spaces with a vanishing trace condition.- Hardys inequality.-
Real interpolation of Sobolev spaces.- Higher regularity for fractional
powers of the Laplacian.- First order formalism.- Katos square root property
on thick sets.- Removing the thickness condition.- Interlude: Extension
operators for fractional Sobolev spaces.- Critical numbers and Lp Lq
bounded families of operators.- Lp-bounds for the H1-calculus and Riesz
transform.- Calder´onZygmund decomposition for Sobolev functions.- Lp bounds
for square roots of elliptic systems.- References.- Index.
Sebastian Bechtel is a postdoctoral researcher in the analysis group of the Delft Institute of Applied Mathematics at Delft university of Technology. He obtained his PhD in Mathematics at the Technical University of Darmstadt, Germany in 2021. His PhD studies were supported by a scholarship of "Studienstiftung des Deutschen Volkes". His research interests include harmonic analysis, PDEs, function spaces, functional calculus, and related topics.