Muutke küpsiste eelistusi

E-raamat: Stability Analysis of Nonlinear Systems

  • Formaat - PDF+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners.

Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.


Arvustused

This text is published by Birkhäuser in the systems and control series. The text is of most value to academics, researchers and students working in nonlinear systems. (ACTC applied control technology consortium, actc-control.com, March, 2016)

Preface to the Second Edition v
Preface vii
1 Inequalities
1(66)
1.0 Introduction
1(1)
1.1 Gronwall--Type Inequalities
2(10)
1.2 Wendorff--Type Inequalities
12(4)
1.3 Bihari--Type Inequalities
16(8)
1.4 Multivariate Inequalities
24(2)
1.5 Differential Inequalities
26(5)
1.6 Integral Inequalities
31(4)
1.7 General Integral Inequalities
35(3)
1.8 Integro--Differential Inequalities
38(8)
1.9 Difference Inequalities
46(6)
1.10 Interval-Valued Integral Inequalities
52(4)
1.11 Inequalities for Piecewise Continuous Functions
56(5)
1.12 Reaction-Diffusion Inequalities
61(4)
1.13 Notes
65(2)
2 Variation of Parameters and Monotone Technique
67(68)
2.0 Introduction
67(1)
2.1 Nonlinear Variation of Parameters
68(5)
2.2 Estimates of Solutions
73(10)
2.3 Global Existence and Terminal Value Problems
83(6)
2.4 Stability Criteria
89(4)
2.5 Method of Upper and Lower Solutions
93(3)
2.6 Monotone Iterative Technique
96(4)
2.7 Method of Mixed Monotony
100(3)
2.8 Method of Lower and Upper Solutions and Interval Analysis
103(3)
2.9 Integro-Differential Equations
106(10)
2.10 Stability in Variation
116(7)
2.11 Difference Equations
123(10)
2.12 Notes
133(2)
3 Stability of Motion in Terms of Two Measures
135(66)
3.0 Introduction
135(1)
3.1 Basic Comparison Results
136(4)
3.2 Stability Concepts in Terms of Two Measures
140(3)
3.3 Stability Criteria in Terms of Two Measures
143(7)
3.4 A Converse Theorem in Terms of Two Measures
150(6)
3.5 Boundedness and Lagrange Stability in Terms of Two Measures
156(2)
3.6 Stability Results for Autonomous or Periodic Systems
158(4)
3.7 Perturbing Family of Lyapunov Functions
162(8)
3.8 M0-Stability Criteria
170(7)
3.9 Several Lyapunov Functions
177(18)
3.9.1 Vector Lyapunov functions method
177(13)
3.9.2 Matrix-valued Lyapunov functions method
190(5)
3.10 Cone Valued Lyapunov Functions
195(4)
3.11 Notes
199(2)
4 Stability of Perturbed Motion
201(52)
4.0 Introduction
201(1)
4.1 Stability of Perturbed Motion in Two Measures
202(3)
4.2 Stability of Perturbed Motion (Continued)
205(4)
4.3 A Technique in Perturbation Theory
209(7)
4.4 Stability of Delay Differential Equations
216(11)
4.5 Stability of Integro-Differential Equations with Finite Memory
227(4)
4.6 Stability of Integro-Differential Equations of Volterra Type
231(3)
4.7 Integro-Differential Equations (Continued)
234(3)
4.8 Stability of Difference Equations
237(4)
4.9 Impulse Differential Equations
241(8)
4.10 Reaction-Diffusion Equations
249(3)
4.11 Notes
252(1)
5 Stability in the Models of Real World Phenomena
253(58)
5.0 Introduction
253(1)
5.1 Stability of a Robot Interacting with a Dynamic Medium
254(16)
5.2 Stabilization of Motions of Affine System
270(3)
5.3 Synchronization of Motions
273(3)
5.4 Stability of Regular Synchronous Generation of Optically Coupled Lasers
276(9)
5.5 Models of World Dynamics and Sustainable Development
285(8)
5.6 Stability Analysis of Impulsive Takagi-Sugeno Systems
293(15)
5.6.1 General results
293(11)
5.6.2 Impulsive Fuzzy Control for Ecological Prey--Predator Community
304(4)
5.7 Notes
308(3)
References 311(16)
Index 327