Muutke küpsiste eelistusi

E-raamat: Stability of Linear Delay Differential Equations: A Numerical Approach with MATLAB

  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.

1 Introduction
1(16)
1.1 Linear Ordinary Differential Equations
2(2)
1.2 Simple Linear Delay Differential Equations
4(3)
1.3 An Example from Population Dynamics
7(3)
1.4 An Example from Mechanical Engineering
10(2)
1.5 Scopes and Synopsis
12(5)
Part I Theory
2 Notation and Basics
17(6)
2.1 Notation
17(2)
2.2 The Cauchy Problem
19(1)
2.3 Stability of Solutions
20(3)
3 Stability of Linear Autonomous Equations
23(12)
3.1 The Solution Operator Semigroup and the Infinitesimal Generator
24(3)
3.2 Spectral Properties and the Characteristic Equation
27(4)
3.3 Linearization and Equilibria
31(4)
4 Stability of Linear Periodic Equations
35(10)
4.1 The Evolution Operator and the Monodromy Operator
36(3)
4.2 Linearization and Periodic Solutions
39(6)
Part II Numerical Analysis
5 The Infinitesimal Generator Approach
45(22)
5.1 The Pseudospectral Differentiation Method
45(3)
5.2 The Piecewise Pseudospectral Differentiation Method
48(2)
5.3 Convergence Analysis
50(14)
5.3.1 A Related Collocation Problem
51(6)
5.3.2 Convergence of the Eigenvalues
57(5)
5.3.3 Quadrature for Distributed Delays
62(2)
5.4 Convergence of the Piecewise Method
64(1)
5.5 Other Methods
64(3)
6 The Solution Operator Approach
67(22)
6.1 The Pseudospectral Collocation Method
68(4)
6.1.1 Discretization of X
68(2)
6.1.2 Discretization of X+
70(1)
6.1.3 Discretization of T
71(1)
6.2 The Collocation Equation
72(4)
6.3 Convergence Analysis
76(10)
6.3.1 Convergence of the Eigenvalues of TN
79(4)
6.3.2 Convergence of the Eigenvalues of TM, N
83(2)
6.3.3 Quadrature for Distributed Delays
85(1)
6.4 Other Methods
86(3)
Part III Implementation and Applications
7 MATLAB Implementation
89(28)
7.1 Introducing the Model in MATLAB
89(4)
7.2 The Infinitesimal Generator Approach
93(8)
7.2.1 A Single Discrete Delay
95(1)
7.2.2 A Single Distributed Delay
96(1)
7.2.3 The Piecewise Method
97(4)
7.3 The Solution Operator Approach
101(16)
7.3.1 The Meshes
103(2)
7.3.2 The Matrix T(1)M
105(3)
7.3.3 The Matrix T(2)M, N
108(2)
7.3.4 The Matrix U(1)M, N
110(5)
7.3.5 The Matrix U(2)N
115(2)
8 Applications
117(30)
8.1 Test Cases
117(13)
8.1.1 Test 1: Linear Autonomous Equations with a Discrete Delay
117(6)
8.1.2 Test 2: Linear Autonomous Equations with Multiple Discrete Delays
123(1)
8.1.3 Test 3: Linear Autonomous Equations with a Distributed Delay
124(2)
8.1.4 Test 4: Linear Autonomous Systems
126(1)
8.1.5 Test 5: Linear Periodic Equations
127(2)
8.1.6 Test 6: Linearized Periodic Equations
129(1)
8.2 Equilibria in Population Dynamics
130(7)
8.3 Periodic Problems in Engineering
137(10)
References 147(10)
Series Editors' Biographies 157