Muutke küpsiste eelistusi

E-raamat: Stabilization Problems with Constraints: Analysis and Computational Aspects

  • Formaat: 302 pages
  • Ilmumisaeg: 24-Dec-2021
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781000673180
  • Formaat - EPUB+DRM
  • Hind: 169,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 302 pages
  • Ilmumisaeg: 24-Dec-2021
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781000673180

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book represents the results of the authors' past ten years' work and research on stabilization problems with constraints and is written for mathematicians, computational mathematicians, practicing engineers and graduate students. It presents and demonstrates stabilizer design techniques that can be used to solve stabilization problems with constraints. The main emphasis of this book is on the methods of stabilization, rather than optimization and stability theory.

Presents mathematicians, computational mathematicians, practicing engineers, and graduate students with stabilizer design techniques that can be used to solve stabilization problems with constraints. Smirnov (mathematics, U. of +vora, Portugal) and Bushenkov (computing, Russian Academy of Sciences, Moscow, Russia) first present background material on convex analysis, differential equations, computational methods of convex analysis, and numerical optimization techniques. The second part is devoted to the behavior of control systems, with examples from mechanics used to illustrate the theory. The last section addresses non-local stabilization problems, including a study of the global stabilization problem. Annotation c. Book News, Inc., Portland, OR (booknews.com)
PART I - Foundations: Convex Analysis
1. Differential Equations and Control Systems
2. Computational Methods of Convex Analysis
PART II - Local Stabilization Problems: Stabilization Problem
1. Controllable Linear Systems
2. Unilateral Stabilization
PART III - Nonlocal Stabilization Problems: Stabilization to Sets
1. Global Stabilization Problem
2. Stabilization of Uncertain Systems
Vladimir A Bushenkov (Author), Georgi V Smirnov (Author)