Muutke küpsiste eelistusi

E-raamat: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance

(Cornell University, New York, USA), (Boston University, Massachusetts, USA)
  • Formaat: 632 pages
  • Sari: Stochastic Modeling Series
  • Ilmumisaeg: 22-Nov-2017
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351414807
  • Formaat - PDF+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 632 pages
  • Sari: Stochastic Modeling Series
  • Ilmumisaeg: 22-Nov-2017
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351414807

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Both an introduction and a basic reference text on non-Gaussian stable models, for graduate students and practitioners. Assuming only a first-year graduate course in probability, it includes material which has only recently appeared in journals and unpublished materials. Each chapter begins with a brief overview and concludes with a range of exercises at varying levels of difficulty. Proofs are spelled out in detail. The volume includes a discussion of self-similar processes, ARMA, and fractional ARIMA time series with stable innovations. Annotation copyright Book News, Inc. Portland, Or.

Arvustused

"There has been a pressing need for a book on this subject...The authors have succeeded in filling the gap...I am very glad a standard reference about stable processes now exists." - Bulletin of the London Mathematical Society

Preface xiii
Abbreviations xvii
Notation xix
Stable random variables on the real line
1(54)
Equivalent definitions of a stable distribution
2(8)
Properties of stable random variables
10(10)
Symmetric α-stable random variables
20(1)
Series representation
21(9)
Series representation of skewed α-stable random variables
30(5)
Graphs and tables of α-stable densities and c.d.f.'s
35(6)
Simulation
41(8)
Exercises
49(6)
Multivariate stable distributions
55(56)
Stable random vectors
57(6)
A counterexample for 0 < α < 1
63(2)
Characteristic function of an α-stable random vector
65(7)
Strictly stable and symmetric stable random vectors
72(5)
Sub-Gaussian random vectors
77(7)
Complex SαS random variables
84(3)
Covariation
87(8)
Covariation norm
95(2)
James orthogonality
97(6)
Codifference
103(4)
Exercises
107(4)
Stable random processes and stochastic integrals
111(62)
Stable stochastic processes
112(1)
Definition of stable integrals as a stochastic process
113(5)
α-stable random measures
118(3)
Constructive definition of stable integrals
121(5)
Properties of stable integrals
126(9)
Examples
135(7)
The SαS Levy motion
135(3)
Moving averages
138(1)
Ornstein-Uhlenbeck process
138(1)
Reverse Ornstein-Uhlenbeck process
139(1)
Well-balanced linear fractional stable motion
140(1)
Log-fractional stable motion
141(1)
Real stationary SαS harmonizable process
141(1)
Sub-Gaussian processes
142(1)
Sub-stable processes
143(2)
Series representation for α-stable random measures
145(4)
A third definition of stable stochastic integrals using the series representation
149(3)
Condition S
152(3)
A fourth definition of stable stochastic integrals using a Poisson representation
155(12)
Exercises
167(6)
Dependence structures of multivariate stable distributions
173(50)
Linear regression
174(7)
Conditional laws that are symmetric around the conditional mean
181(4)
Linear dependence
185(2)
Probability tails of order statistics
187(13)
Joint moments
200(4)
Association of stable random variables
204(4)
The codifference for stationary SαS processes
208(7)
The expected number of level crossings for stationary sub Gaussian processes
215(2)
Exercises
217(6)
Non-linear regression
223(48)
Conditional moments of order greater than or equal to α
224(12)
Analytic representations of the non-linear regression functions
236(15)
Examples
251(4)
Graphical representations
255(5)
Numerical techniques
260(10)
Exercises
270(1)
Complex stable stochastic integrals and harmonizable processes
271(38)
Complex-valued SαS random measures
272(3)
Integrals with respect to complex-valued SαS random measures
275(6)
The complex isotropic SαS case
281(5)
Series representation of complex-valued SαS random measures and integrals
286(5)
Harmonizable process
291(9)
Stationary real harmonizable processes
300(5)
The codifference for stationary real harmonizable processes
305(1)
Exercises
306(3)
Self-similar processes
309(82)
Self-similarity
311(7)
Fractional Brownian motion
318(22)
``Moving average'' representations of fractional Brownian motion
320(5)
``Harmonizable'' representations of fractional Brownian motion
325(7)
Fractional Gaussian noise
332(8)
General characteristics of processes that are α-stable and H-sssi
340(3)
Linear fractional stable motion
343(6)
α-stable Levy motion
349(3)
Log-fractional stable motion
352(3)
The real harmonizable fractional stable motion
355(3)
Complex harmonizable fractional stable motion
358(5)
Subordinated processes
363(3)
Fractional stable noises
366(4)
Simulation of fractional noises and motions
370(6)
ARMA sequences with stable innovations
376(4)
Fractional ARIMA with stable innovations
380(7)
Exercises
387(4)
Chentsov random fields
391(28)
Self-similar fields with stationary increments in the strong sense
392(2)
Chentsov random fields
394(6)
Example: the Levy-Chentsov random field
400(2)
Example: Takenaka random fields
402(3)
Properties of Chentsov random fields
405(2)
Properties of H-sssis Chentsov random fields
407(3)
Codifference induced by (α, H)-Takenaka fields
410(4)
Takenaka processes on (0, ∞)
414(3)
Exercises
417(2)
Introduction to sample path properties
419(26)
Versions
420(1)
Separability
421(6)
Applications
427(3)
Measurability
430(4)
Zero-one laws
434(5)
Exercises
439(6)
Boundedness, continuity and oscillations
445(52)
Introduction
446(1)
Necessary conditions for sample boundedness
447(8)
Necessary conditions for sample continuity
455(5)
Necessary and sufficient conditions for sample boundedness and continuity when 0 < α < 1
460(10)
Probability tails of suprema of bounded α-stable processes, with index 0 < α < 2
470(6)
The oscillation process
476(6)
The case 0 < α < 1
482(1)
The case 1 ≤ α < 2
483(1)
The level sets of the oscillation function
484(2)
A sample path alternative
486(2)
How strong is the basic assumption?
488(2)
Exercises
490(7)
Measurability, integrability and absolute continuity
497(40)
Existence of a measurable version
498(4)
Integrability of the sample paths of stable processes
502(2)
Conditions for integrability
504(7)
Changing the order of integration
511(4)
Tail behavior of the LP-norm distribution
515(4)
Inversion formula for harmonizable SαS processes
519(5)
Absolute continuity of stable processes
524(9)
Exercises
533(4)
Boundedness and continuity via metric entropy
537(22)
Metric entropy
538(4)
Sufficient conditions in the case 1 ≤ α 7lt; 2
542(4)
Necessary conditions in the case 1 ≤ α 7lt; 2
546(4)
Boundedness and continuity of self-similar α-stable processes
550(6)
Exercises
556(3)
Integral representation
559(12)
Countable parameter space
560(8)
Arbitrary parameter space
568(3)
Historical notes and extensions
571(26)
Notes to
Chapter 1
571(4)
Notes to
Chapter 2
575(2)
Notes to
Chapter 3
577(1)
Notes to
Chapter 4
578(4)
Notes to
Chapter 5
582(3)
Notes to
Chapter 6
585(1)
Notes to
Chapter 7
586(4)
Notes to
Chapter 8
590(2)
Notes to
Chapter 9
592(1)
Notes to
Chapter 10
592(1)
Notes to
Chapter 11
593(1)
Notes to
Chapter 12
594(1)
Notes to
Chapter 13
595(2)
Appendix: 597(1)
A Table of symmetric α-stable fractiles 597(6)
Bibliography 603(18)
Subject index 621(8)
Author index 629


Samoradnitsky, Gennady