Muutke küpsiste eelistusi

E-raamat: Stable Solutions of Elliptic Partial Differential Equations

  • Formaat: 335 pages
  • Ilmumisaeg: 15-Mar-2011
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040211007
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 335 pages
  • Ilmumisaeg: 15-Mar-2011
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040211007
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces).





Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.

Arvustused

the author has put every effort into giving complete details of the computations. ... the self-contained one hundred-page long appendices provide a splendid resource for the reader. The material contained there has been chosen with particular good taste and constitutes in itself a valuable source of information. Remarks and further features ... are presented in an 'exercise' format. I have found many of them suitably posed and reasonable to work at the level of the book. -Jose C. Sabina de Lis, Mathematical Reviews, 2012i

Preface xi
1 Defining stability
1(28)
1.1 Stability and the variations of energy
1(8)
1.1.1 Potential wells
1(4)
1.1.2 Examples of stable solutions
5(4)
1.2 Linearized stability
9(6)
1.2.1 Principal eigenvalue of the linearized operator
9(2)
1.2.2 New examples of stable solutions
11(4)
1.3 Elementary properties of stable solutions
15(5)
1.3.1 Uniqueness
15(1)
1.3.2 Nonuniqueness
16(2)
1.3.3 Symmetry
18(2)
1.4 Dynamical stability
20(4)
1.5 Stability outside a compact set
24(2)
1.6 Resolving an ambiguity
26(3)
2 The Gelfand problem
29(18)
2.1 Motivation
29(1)
2.2 Dimension N = 1
30(4)
2.3 Dimension N = 2
34(1)
2.4 Dimension N ≥ 3
35(9)
2.4.1 Stability analysis
39(5)
2.5 Summary
44(3)
3 Extremal solutions
47(28)
3.1 Weak solutions
48(3)
3.1.1 Defining weak solutions
48(3)
3.2 Stable weak solutions
51(7)
3.2.1 Uniqueness of stable weak solutions
51(2)
3.2.2 Approximation of stable weak solutions
53(5)
3.3 The stable branch
58(17)
3.3.1 When is λ finite?
61(1)
3.3.2 What happens at λ = λ?
62(7)
3.3.3 Is the stable branch a (smooth) curve?
69(4)
3.3.4 Is the extremal solution bounded?
73(2)
4 Regularity theory of stable solutions
75(24)
4.1 The radial case
75(5)
4.2 Back to the Gelfand problem
80(2)
4.3 Dimensions N = 1, 2, 3
82(3)
4.4 A geometric Poincare formula
85(3)
4.5 Dimension N = 4
88(8)
4.5.1 Interior estimates
88(6)
4.5.2 Boundary estimates
94(1)
4.5.3 Proof of Theorem 4.5.1 and Corollary 4.5.1
95(1)
4.6 Regularity of solutions of bounded Morse index
96(3)
5 Singular stable solutions
99(38)
5.1 The Gelfand problem in the perturbed ball
99(11)
5.2 Flat domains
110(5)
5.3 Partial regularity of stable solutions in higher dimensions
115(22)
5.3.1 Approximation of singular stable solutions
116(3)
5.3.2 Elliptic regularity in Morrey spaces
119(4)
5.3.3 Measuring singular sets
123(2)
5.3.4 A monotonicity formula
125(5)
5.3.5 Proof of Theorem 5.3.1
130(7)
6 Liouville theorems for stable solutions
137(26)
6.1 Classifying radial stable entire solutions
137(4)
6.2 Classifying stable entire solutions
141(6)
6.2.1 The Liouville equation
141(2)
6.2.2 Dimension N = 2
143(2)
6.2.3 Dimensions N = 3, 4
145(2)
6.3 Classifying solutions that are stable outside a compact set
147(16)
6.3.1 The critical case
147(7)
6.3.2 The supercritical range
154(4)
6.3.3 Flat nonlinearities
158(5)
7 A conjecture of De Giorgi
163(16)
7.1 Statement of the conjecture
163(1)
7.2 Motivation for the conjecture
164(9)
7.2.1 Phase transition phenomena
164(2)
7.2.2 Monotone solutions and global minimizers
166(6)
7.2.3 From Bernstein to De Giorgi
172(1)
7.3 Dimension N = 2
173(1)
7.4 Dimension N = 3
174(5)
8 Further readings
179(24)
8.1 Stability versus geometry of the domain
179(5)
8.1.1 The half-space
179(2)
8.1.2 Domains with controlled volume growth
181(2)
8.1.3 Exterior domains
183(1)
8.2 Symmetry of stable solutions
184(2)
8.2.1 Foliated Schwarz symmetry
184(2)
8.2.2 Convex domains
186(1)
8.3 Beyond the stable branch
186(5)
8.3.1 Turning point
186(1)
8.3.2 Mountain-pass solutions
187(1)
8.3.3 Uniqueness for small λ
188(3)
8.3.4 Regularity of solutions of bounded Morse index
191(1)
8.4 The parabolic equation
191(3)
8.5 Other energy functionals
194(9)
8.5.1 The p-Laplacian
194(1)
8.5.2 The biharmonic operator
195(1)
8.5.3 The fractional Laplacian
196(3)
8.5.4 The area functional
199(1)
8.5.5 Stable solutions on manifolds
199(4)
A Maximum principles
203(30)
A.1 Elementary properties of the Laplace operator
203(5)
A.2 The maximum principle
208(1)
A.3 Harnack's inequality
209(1)
A.4 The boundary-point lemma
210(4)
A.5 Elliptic operators
214(2)
A.6 The Laplace operator with a potential
216(4)
A.7 Thin domains and unbounded domains
220(1)
A.8 Nonlinear comparison principle
221(1)
A.9 L1 theory for the Laplace operator
222(11)
A.9.1 Linear theory and weak comparison principle
222(3)
A.9.2 The boundary-point lemma
225(1)
A.9.3 Sub- and supersolutions in the L1 setting
226(7)
B Regularity theory for elliptic operators
233(40)
B.1 Harmonic functions
233(7)
B.1.1 Interior regularity
233(2)
B.1.2 Solving the Dirichlet problem on the unit ball
235(2)
B.1.3 Solving the Dirichlet problem on smooth domains
237(3)
B.2 Schauder estimates
240(12)
B.2.1 Poisson's equation on the unit ball
240(7)
B.2.2 A priori estimates for C2,α solutions
247(2)
B.2.3 Existence of C2,α solutions
249(3)
B.3 Calderon-Zygmund estimates
252(1)
B.4 Moser iteration
253(4)
B.5 The inverse-square potential
257(16)
B.5.1 The kernel of L = - Δ - c/|x|2
258(1)
B.5.2 Functional setting
259(1)
B.5.3 The case ξ = 0
260(8)
B.5.4 The case ξ ≠ 0
268(5)
C Geometric tools
273(30)
C.1 Functional inequalities
273(5)
C.1.1 The isoperimetric inequality
273(2)
C.1.2 The Sobolev inequality
275(1)
C.1.3 The Hardy inequality
276(2)
C.2 Submanifolds of RN
278(16)
C.2.1 Metric tensor, tangential gradient
279(2)
C.2.2 Surface area of a submanifold
281(1)
C.2.3 Curvature, Laplace-Beltrami operator
282(5)
C.2.4 The Sobolev inequality on submanifolds
287(7)
C.3 Geometry of level sets
294(3)
C.3.1 Coarea formula
295(2)
C.4 Spectral theory of the Laplace operator on the sphere
297(6)
References 303(16)
Index 319
Louis Dupaigne is an assistant professor at Université Picardie Jules Verne in Amiens, France.