Muutke küpsiste eelistusi

E-raamat: Stable Stems

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over $\mathbb C$. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over $\mathbb C$ through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications.

In addition to finding all Adams differentials, the author also resolves all hidden extensions by $2$, $\eta $, and $\nu $ through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences.

The author also computes the motivic stable homotopy groups of the cofiber of the motivic element $\tau $. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of $\tau $ are the same as the $E_2$-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.
Introduction
The cohomology of the motivic Steenrod algebra
Differentials in the Adams spectral sequence
Hidden extensions in the Adams spectral sequence
The cofiber of $\tau $
Reverse engineering the Adams-Novikov spectral sequence
Tables
Bibliography
Index.
Daniel C. Isaksen, Wayne State University, Detroit, MI.