Muutke küpsiste eelistusi

E-raamat: State Estimation for Robotics

(University of Toronto)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-Jul-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108515672
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-Jul-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108515672
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A key aspect of robotics today is estimating the state, such as position and orientation, of a robot as it moves through the world. Most robots and autonomous vehicles depend on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-dimensional world. This book presents common sensor models and practical advice on how to carry out state estimation for rotations and other state variables. It covers both classical state estimation methods such as the Kalman filter, as well as important modern topics such as batch estimation, the Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. The methods are demonstrated in the context of important applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Students and practitioners of robotics alike will find this a valuable resource.

Arvustused

'This book provides a timely, concise, and well-scoped introduction to state estimation for robotics. It complements existing textbooks by giving a balanced presentation of estimation theoretic and geometric tools and discusses how these tools can be used to solve common estimation problems arising in robotics. It also strikes an excellent balance between theory and motivating examples.' Luca Carlone, IEEE Control Systems Magazine

Muu info

A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.
Preface vii
Acronyms and Abbreviations ix
Notation xi
1 Introduction
1(8)
1.1 A Little History
1(2)
1.2 Sensors, Measurements, and Problem Definition
3(1)
1.3 How This Book Is Organized
4(1)
1.4 Relationship to Other Books
5(4)
Part I Estimation Machinery
2 Primer on Probability Theory
9(26)
2.1 Probability Density Functions
9(6)
2.2 Gaussian Probability Density Functions
15(17)
2.3 Gaussian Processes
32(1)
2.4 Summary
33(1)
2.5 Exercises
33(2)
3 Linear-Gaussian Estimation
35(53)
3.1 Batch Discrete-Time Estimation
35(14)
3.2 Recursive Discrete-Time Smoothing
49(7)
3.3 Recursive Discrete-Time Filtering
56(15)
3.4 Batch Continuous-Time Estimation
71(14)
3.5 Summary
85(1)
3.6 Exercises
85(3)
4 Nonlinear Non-Gaussian Estimation
88(57)
4.1 Introduction
88(5)
4.2 Recursive Discrete-Time Estimation
93(30)
4.3 Batch Discrete-Time Estimation
123(15)
4.4 Batch Continuous-Time Estimation
138(5)
4.5 Summary
143(1)
4.6 Exercises
144(1)
5 Biases, Correspondences, and Outliers
145(20)
5.1 Handling Input/Measurement Biases
145(7)
5.2 Data Association
152(2)
5.3 Handling Outliers
154(7)
5.4 Summary
161(1)
5.5 Exercises
161(4)
Part II Three-Dimensional Machinery
6 Primer on Three-Dimensional Geometry
165(40)
6.1 Vectors and Reference Frames
165(3)
6.2 Rotations
168(15)
6.3 Poses
183(7)
6.4 Sensor Models
190(13)
6.5 Summary
203(1)
6.6 Exercises
203(2)
7 Matrix Lie Groups
205(82)
7.1 Geometry
205(39)
7.2 Kinematics
244(12)
7.3 Probability and Statistics
256(26)
7.4 Summary
282(1)
7.5 Exercises
282(5)
Part III Applications
8 Pose Estimation Problems
287(40)
8.1 Point-Cloud Alignment
287(21)
8.2 Point-Cloud Tracking
308(11)
8.3 Pose-Graph Relaxation
319(8)
9 Pose-and-Point Estimation Problems
327(20)
9.1 Bundle Adjustment
327(15)
9.2 Simultaneous Localization and Mapping
342(5)
10 Continuous-Time Estimation
347(12)
10.1 Motion Prior
347(6)
10.2 Simultaneous Trajectory Estimation and Mapping
353(6)
References 359(6)
Index 365
Timothy D. Barfoot is a Professor at the University of Toronto Institute for Aerospace Studies (UTIAS). He has been conducting research in the area of navigation of mobile robotics for over fifteen years, both in industry and academia, for applications including space exploration, mining, military, and transportation. He has made contributions in the area of localization, mapping, planning, and control. He sits on the editorial boards of the International Journal of Robotics Research and the Journal of Field Robotics, and was the General Chair of Field and Service Robotics 2015, which was held in Toronto.