Muutke küpsiste eelistusi

E-raamat: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers: 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th MICCAI conference.





The 34 regular workshop papers included in this volume were carefully reviewed and selected after being revised and deal with topics such as: common cardiac segmentation and modelling problems to more advanced generative modelling for ageing hearts, learning cardiac motion using biomechanical networks, physics-informed neural networks for left atrial appendage occlusion, biventricular mechanics for Tetralogy of Fallot, ventricular arrhythmia prediction by using graph convolutional network, and deeper analysis of racial and sex biases from machine learning-based cardiac segmentation.





In addition, 14 papers from the CMRxMotion challenge are included in the proceedings which aim to assess the effects of respiratory motion on cardiac MRI (CMR) imaging quality and examine the robustness of segmentation models in face of respiratory motion artefacts.





A total of 48 submissions to the workshop was received.
Generative Modelling of the Ageing Heart with Cross-Sectional Imaging
and Clinical Data.- Learning correspondences of cardiac motion using
biomechanics-informed modeling.- Multi-modal Latent-space Self-alignment for
Super-resolution Cardiac MR Segmentation.- Towards real-time optimization of
left atrial appendage occlusion device placement through physics-informed
neural networks.- Haemodynamic changes in the fetal circulation after
connection to an artificial placenta: a computational modelling study.-
Personalized Fast Electrophysiology Simulations to Evaluate Arrhythmogenicity
of Ventricular Slow Conduction Channels.- Self-supervised motion descriptor
for cardiac phase detection in 4D CMR based on discrete vector field
estimations.- Going Off-Grid: Continuous Implicit Neural Representations for
3D Vascular Modeling.- Comparison of Semi- and Un-supervised Domain
Adaptation Methods for Whole-Heart Segmentation.- Automated Quality
Controlled Analysis of 2D Phase Contrast Cardiovascular Magnetic Resonance
Imaging.- An Atlas-Based Analysis of Biventricular Mechanics in Tetralogy of
Fallot.- Review of data types and model dimensionality for cardiac DTI
SMS-related artefact removal.- Improving Echocardiography Segmentation by
Polar Transformation.- Spatiotemporal Cardiac Statistical Shape Modeling: A
Data-Driven Approach.- Interpretable Prediction of Post-Infarct Ventricular
Arrhythmia using Graph Convolutional Network.- Unsupervised Echocardiography
Registration through Patch-based MLPs and Transformers.- Sensitivity analysis
of left atrial wall modeling approaches and inlet/outlet boundary conditions
in fluid simulations to predict thrombus formation.- APHYN-EP: Physics-based
deep learning framework to learn and forecast cardiac electrophysiology
dynamics.- Unsupervised machine-learning exploration of morphological and
haemodynamic indices to predict thrombus formation at the left atrial
appendage.- Geometrical deep learning for the estimation of residence time
inthe left atria.- Explainable Electrocardiogram Analysis with Wave
Decomposition: Application to Myocardial Infarction Detection.- A systematic
study of race and sex bias in CNN-based cardiac MR segmentation.- Mesh U-Nets
for 3D Cardiac Deformation Modeling.- Skeletal model-based analysis of the
tricuspid valve in hypoplastic left heart syndrome.- Simplifying Disease
Staging Models into a Single Anatomical Axis A Case Study of Aortic
Coarctation In-utero.- Point2Mesh-Net: Combining Point Cloud and Mesh-Based
Deep Learning for Cardiac Shape Reconstruction.- Post-Infarction Risk
Prediction with Mesh Classification Networks.- Statistical Shape Modeling of
Biventricular Anatomy with Shared Boundaries.- Computerized Analysis of the
Human Heart to Guide Targeted Treatment of Atrial Fibrillation.- 3D Mitral
Valve Surface Reconstruction from 3D TEE via Graph Neural Networks.-
Efficient MRI Reconstruction with Reinforcement Learning for Automatic
Acquisition Stopping.- Unsupervised Cardiac Segmentation Utilizing
Synthesized Images from Anatomical Labels.- PAT-CNN: Automatic Segmentation
and Quantification of Pericardial Adipose Tissue from T2-Weighted Cardiac
Magnetic Resonance Images.- Deep Computational Model for the Inference of
Ventricular Activation Properties.- Semi-Supervised Domain Generalization for
Cardiac Magnetic Resonance Image Segmentation with High Quality Pseudo
Labels.- Cardiac Segmentation using Transfer Learning under Respiratory
Motion Artifacts.- Deep Learning Based Classification and Segmentation for
Cardiac Magnetic Resonance Imaging with Respiratory Motion Artifacts.-
Multi-task Swin Transformer for Motion Artifacts Classification and Cardiac
Magnetic Resonance Image Segmentation.- Automatic Quality Assessment of
Cardiac MR Images with Motion Artefacts using Multi-task Learning and K-Space
Motion Artefact Augmentation.- Motion-related Artefact Classification Using
Patch-based Ensemble and Transfer Learning in Cardiac MRI.- Automatic Image
Quality Assessment and Cardiac Segmentation Based on CMR Images.- Detecting
respiratory motion artefacts for cardiovascular MRIs to ensure high-quality
segmentation.- 3D MRI cardiac segmentation under respiratory motion
artifacts.- Cardiac MR Image Segmentation and Quality Control in the Presence
of Respiratory Motion Artifact using Simulated Data.- Combination Special
Data Augmentation and Sampling Inspection Network for Cardiac Magnetic
Resonance Imaging Quality Classification.- Automatic Cardiac Magnetic
Resonance Respiratory Motions Assessment and Segmentation.- Robust Cardiac
MRI Segmentation with Data-Centric Models to Improve Performance via
Intensive Pre-training and Augmentation.- A deep learning-based fully
automatic framework for motion-existing cine image quality control and
quantitative analysis.