Muutke küpsiste eelistusi

E-raamat: Statistical Computing

  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book the authors have assembled the best techniques from a great variety of sources, establishing a benchmark for the field of statistical computing. ---Mathematics of Computation . The text is highly readable and well illustrated with examples.  The reader who intends to take a hand in designing his own regression and multivariate packages will find a storehouse of information and a valuable resource in the field of statistical computing.

Arvustused

"The publication of this book, I believe, is a milestone. . .Kennedy and Gentle have done an outstanding job of assembling the best techniques from a great variety of sources, establishing a benchmark for the field of statistical computing. " ---Mathematics of Computation ". . .a very impressive text. . .highly readable and well illustrated with examples. . . .the reader who intends to take a hand in designing his own regression and multivariate packages will find a storehouse of information. " ---Journal of the American Statistical Association ". . .a valuable addition to the literature on statistical computing. " ---Mathematical Reviews

Introduction, Orientation Purpose, Prerequisites Presentation of
Algorithms Computer Organization, Introduction, Components of the Digital
Computer System, Representation of Numeric Values Floating and Fixed-Point
Arithmetic Operations, Error in Floating-Point Computation, Introduction,
Types of Error Error Due to Approximation, Imposed by the Compute Analyzing
Error in a Finite Process, Rounding Error in Floating-Point Operations,
Rounding Error in Two Common Floating-Point Calculations, Condition and
Numerical Stability, Other Methods of Assessing Error in Computations,
Summary Programming and Statistical Software, Programming Languages:
Introduction, Components of Programming Languages, Program Development
Statistical Software ,Approximating Probabilities and Percentage Points in
Selected Probability Distributions, Notation and General Considerations,
General Methods in Approximation, The Normal Distribution, Student's t
Distribution, The Beta Distribution, F Distribution, Chi-Square Distribution,
Random Numbers: Generation, Tests, and Applications, Introduction, Generation
of Uniform Random Numbers, Tests of Random Number Generators, General
Techniques for Generation of Nonuniform Random Variates, Generation of
Variates from Specific Distributions, Applications Selected Computational
Methods in Linear Algebra, Introduction, Methods Based on Orthogonal
Transformations, Gaussian Elimination and the Sweep Operator, Cholesky
Decomposition and Rank-One Update, Summary, Computational Methods for
Multiple Linear Regression, Analysis, Basic Computational Methods,
Regression, Model Building Multiple Regression Under Linear Restrictions,
Computational Methods for Classification Models, Introduction, The Special
Case of Balance and Completeness for Fixed-Effects Models, The General
Problem for Fixed-Effects Models, Computing Expected Mean Squares and
Estimates of Variance Components, Unconstrained Optimization and Nonlinear
Regression Preliminaries Methods for Unconstrained Minimization Nonlinear
Regression, Computational Methods Test Problems, Model Fitting Based on
Criteria, Other Than Least Squares, Introduction, Minimum Lp Norm Estimators,
Other Robust Estimators, Biased Estimation Robust Nonlinear Regression
Exercises, Selected Multivariate Methods, Introduction Canonical
Correlations, Principal Components, Factor Analysis, Multivariate, Analysis
of Variance.  
Martorell, Sebastián; Guedes Soares, Carlos; Barnett, Julie