List of Figures |
|
xi | |
List of Tables |
|
xvi | |
About the Series |
|
xviii | |
Preface |
|
xxi | |
About the Author |
|
xxiii | |
Chapter 1 Basic statistical concepts |
|
1 | (36) |
|
|
1 | (1) |
|
1.2 Before- and after-the-experiment concepts |
|
|
2 | (4) |
|
1.3 Definition of probability |
|
|
6 | (4) |
|
1.3.1 Countable and uncountable quantities |
|
|
8 | (2) |
|
1.4 Joint and conditional probabilities |
|
|
10 | (3) |
|
|
13 | (4) |
|
|
17 | (2) |
|
1.7 Pre-posterior and posterior |
|
|
19 | (6) |
|
1.7.1 Reduction of pre-posterior to posterior |
|
|
19 | (1) |
|
1.7.2 Posterior through Bayes theorem |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
1.7.5 Designs of experiments |
|
|
23 | (2) |
|
1.8 Extension to multi-dimensions |
|
|
25 | (4) |
|
1.8.1 Chain rule and marginalization |
|
|
26 | (1) |
|
1.8.2 Nuisance quantities |
|
|
27 | (2) |
|
1.9 Unconditional and conditional independence |
|
|
29 | (5) |
|
|
34 | (3) |
Chapter 2 Elements of decision theory |
|
37 | (30) |
|
|
37 | (2) |
|
2.2 Loss function and expected loss |
|
|
39 | (3) |
|
2.3 After-the-experiment decision making |
|
|
42 | (14) |
|
|
43 | (5) |
|
2.3.2 Interval estimation |
|
|
48 | (2) |
|
2.3.3 Multiple-alternative decisions |
|
|
50 | (2) |
|
2.3.4 Binary hypothesis testing/detection |
|
|
52 | (4) |
|
2.4 Before-the-experiment decision making |
|
|
56 | (8) |
|
|
58 | (4) |
|
|
62 | (2) |
|
2.5 Robustness of the analysis |
|
|
64 | (3) |
Chapter 3 Counting statistics |
|
67 | (32) |
|
3.1 Introduction to statistical models |
|
|
67 | (2) |
|
3.2 Fundamental statistical law |
|
|
69 | (2) |
|
3.3 General models of photon-limited data |
|
|
71 | (17) |
|
3.3.1 Binomial statistics of nuclear decay |
|
|
71 | (1) |
|
3.3.2 Multinomial statistics of detection |
|
|
72 | (5) |
|
3.3.3 Statistics of complete data |
|
|
77 | (7) |
|
3.3.4 Poisson-multinomial distribution of nuclear data |
|
|
84 | (4) |
|
3.4 Poisson approximation |
|
|
88 | (5) |
|
3.4.1 Poisson statistics of nuclear decay |
|
|
88 | (2) |
|
3.4.2 Poisson approximation of nuclear data |
|
|
90 | (3) |
|
3.5 Normal distribution approximation |
|
|
93 | (6) |
|
3.5.1 Approximation of binomial law |
|
|
94 | (1) |
|
3.5.2 Central limit theorem |
|
|
95 | (4) |
Chapter 4 Monte Carlo methods in posterior analysis |
|
99 | (30) |
|
4.1 Monte Carlo approximations of distributions |
|
|
99 | (8) |
|
4.1.1 Continuous distributions |
|
|
99 | (5) |
|
4.1.2 Discrete distributions |
|
|
104 | (3) |
|
4.2 Monte Carlo integrations |
|
|
107 | (3) |
|
4.3 Monte Carlo summations |
|
|
110 | (1) |
|
|
111 | (18) |
|
|
113 | (1) |
|
|
114 | (2) |
|
4.4.3 Design of Markov chain |
|
|
116 | (2) |
|
4.4.4 Metropolis-Hastings sampler |
|
|
118 | (2) |
|
|
120 | (6) |
|
4.4.6 Resampling methods (bootstrap) |
|
|
126 | (3) |
Chapter 5 Basics of nuclear imaging |
|
129 | (50) |
|
|
130 | (11) |
|
5.1.1 Basics of nuclear physics |
|
|
130 | (6) |
|
5.1.1.1 Atoms and chemical reactions |
|
|
130 | (1) |
|
5.1.1.2 Nucleus and nuclear reactions |
|
|
131 | (2) |
|
5.1.1.3 Types of nuclear decay |
|
|
133 | (3) |
|
5.1.2 Interaction of radiation with matter |
|
|
136 | (5) |
|
5.1.2.1 Inelastic scattering |
|
|
137 | (1) |
|
5.1.2.2 Photoelectric effect |
|
|
138 | (1) |
|
5.1.2.3 Photon attenuation |
|
|
138 | (3) |
|
5.2 Radiation detection in nuclear imaging |
|
|
141 | (6) |
|
5.2.1 Semiconductor detectors |
|
|
142 | (1) |
|
5.2.2 Scintillation detectors |
|
|
143 | (4) |
|
5.2.2.1 Photomultiplier tubes |
|
|
144 | (1) |
|
5.2.2.2 Solid-state photomultipliers |
|
|
145 | (2) |
|
|
147 | (21) |
|
5.3.1 Photon-limited data |
|
|
150 | (2) |
|
5.3.2 Region of response (ROR) |
|
|
152 | (1) |
|
5.3.3 Imaging with gamma camera |
|
|
153 | (6) |
|
|
153 | (4) |
|
|
157 | (2) |
|
5.3.4 Positron emission tomography (PET) |
|
|
159 | (7) |
|
5.3.4.1 PET nuclear imaging scanner |
|
|
159 | (2) |
|
5.3.4.2 Coincidence detection |
|
|
161 | (1) |
|
5.3.4.3 ROR for PET and TOF-PET |
|
|
162 | (3) |
|
5.3.4.4 Quantitation of PET |
|
|
165 | (1) |
|
|
166 | (2) |
|
5.4 Dynamic imaging and kinetic modeling |
|
|
168 | (5) |
|
5.4.1 Compartmental model |
|
|
169 | (2) |
|
5.4.2 Dynamic measurements |
|
|
171 | (2) |
|
5.5 Applications of nuclear imaging |
|
|
173 | (6) |
|
5.5.1 Clinical applications |
|
|
173 | (1) |
|
|
174 | (5) |
Chapter 6 Statistical computing |
|
179 | (30) |
|
6.1 Computing using Poisson-multinomial distribution (PMD) |
|
|
179 | (14) |
|
6.1.1 Sampling the posterior |
|
|
180 | (2) |
|
6.1.2 Computationally efficient priors |
|
|
182 | (4) |
|
6.1.3 Generation of Markov chain |
|
|
186 | (1) |
|
6.1.4 Metropolis-Hastings algorithm |
|
|
187 | (3) |
|
6.1.5 Origin ensemble algorithms |
|
|
190 | (3) |
|
6.2 Examples of statistical computing |
|
|
193 | (16) |
|
6.2.1 Simple tomographic system (STS) |
|
|
194 | (1) |
|
6.2.2 Image reconstruction |
|
|
195 | (3) |
|
|
198 | (2) |
|
6.2.4 Evaluation of data quality |
|
|
200 | (3) |
|
6.2.5 Detection-Bayesian decision making |
|
|
203 | (2) |
|
|
205 | (4) |
Appendix A Probability distributions |
|
209 | (4) |
|
A.1 Univariate distributions |
|
|
209 | (2) |
|
A.1.1 Binomial distribution |
|
|
209 | (1) |
|
|
209 | (1) |
|
A.1.3 Negative binomial distribution |
|
|
209 | (1) |
|
A.1.4 Poisson-binomial distribution |
|
|
210 | (1) |
|
A.1.5 Poisson distribution |
|
|
210 | (1) |
|
A.1.6 Uniform distribution |
|
|
210 | (1) |
|
A.1.7 Univariate normal distribution |
|
|
210 | (1) |
|
A.2 Multivariate distributions |
|
|
211 | (2) |
|
A.2.1 Multinomial distribution |
|
|
211 | (1) |
|
A.2.2 Multivariate normal distribution |
|
|
211 | (1) |
|
A.2.3 Poisson-multinomial distribution |
|
|
211 | (2) |
Appendix B Elements of set theory |
|
213 | (4) |
Appendix C Multinomial distribution of single-voxel imaging |
|
217 | (4) |
Appendix D Derivations of sampling distribution ratios |
|
221 | (2) |
Appendix E Equation (6.11) |
|
223 | (2) |
Appendix F C++ OE code for STS |
|
225 | (6) |
References |
|
231 | (8) |
Index |
|
239 | |