Preface |
|
xvii | |
List of Acronyms |
|
xx | |
|
|
1 | (22) |
|
|
1 | (1) |
|
|
1 | (3) |
|
1.2.1 Probability Distributions |
|
|
2 | (1) |
|
1.2.2 Conditional Probability Distributions |
|
|
2 | (1) |
|
1.2.3 Expectations and Conditional Expectations |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.2.5 General Random Variables |
|
|
3 | (1) |
|
1.3 Statistical Inference |
|
|
4 | (3) |
|
|
5 | (1) |
|
1.3.2 Some Generic Estimation Problems |
|
|
6 | (1) |
|
1.3.3 Some Generic Detection Problems |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.5 Statistical Decision Theory |
|
|
7 | (5) |
|
1.5.1 Conditional Risk and Optimal Decision Rules |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.5.4 Other Non-Bayesian Rules |
|
|
11 | (1) |
|
1.6 Derivation of Bayes Rule |
|
|
12 | (2) |
|
1.7 Link Between Minimax and Bayesian Decision Theory |
|
|
14 | (4) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.7.4 Randomized Decision Rules |
|
|
16 | (2) |
|
|
18 | (3) |
|
|
21 | (2) |
Part I Hypothesis Testing |
|
23 | (234) |
|
2 Binary Hypothesis Testing |
|
|
25 | (29) |
|
|
25 | (1) |
|
2.2 Bayesian Binary Hypothesis Testing |
|
|
26 | (6) |
|
2.2.1 Likelihood Ratio Test |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (4) |
|
2.3 Binary Minimax Hypothesis Testing |
|
|
32 | (8) |
|
|
33 | (1) |
|
2.3.2 Bayes Risk Line and Minimum Risk Curve |
|
|
34 | (1) |
|
2.3.3 Differentiable V(π0) |
|
|
35 | (1) |
|
2.3.4 Nondifferentiable V(π0) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (2) |
|
2.4 Neyman-Pearson Hypothesis Testing |
|
|
40 | (7) |
|
2.4.1 Solution to the NP Optimization Problem |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.4.3 Receiver Operating Characteristic |
|
|
43 | (1) |
|
|
44 | (2) |
|
2.4.5 Convex Optimization |
|
|
46 | (1) |
|
|
47 | (7) |
|
3 Multiple Hypothesis Testing |
|
|
54 | (17) |
|
|
54 | (1) |
|
3.2 Bayesian Hypothesis Testing |
|
|
55 | (3) |
|
3.2.1 Optimal Decision Regions |
|
|
56 | (2) |
|
3.2.2 Gaussian Ternary Hypothesis Testing |
|
|
58 | (1) |
|
3.3 Minimax Hypothesis Testing |
|
|
58 | (4) |
|
3.4 Generalized Neyman-Pearson Detection |
|
|
62 | (1) |
|
3.5 Multiple Binary Tests |
|
|
62 | (5) |
|
3.5.1 Bonferroni Correction |
|
|
63 | (1) |
|
3.5.2 False Discovery Rate |
|
|
64 | (1) |
|
3.5.3 Benjamini-Hochberg Procedure |
|
|
65 | (1) |
|
3.5.4 Connection to Bayesian Decision Theory |
|
|
66 | (1) |
|
|
67 | (3) |
|
|
70 | (1) |
|
4 Composite Hypothesis Testing |
|
|
71 | (34) |
|
|
71 | (1) |
|
|
72 | (5) |
|
4.2.1 Uniform Costs Over Each Hypothesis |
|
|
73 | (3) |
|
4.2.2 Nonuniform Costs Over Hypotheses |
|
|
76 | (1) |
|
4.3 Uniformly Most Powerful Test |
|
|
77 | (5) |
|
|
77 | (2) |
|
4.3.2 Monotone Likelihood Ratio Theorem |
|
|
79 | (1) |
|
4.3.3 Both Composite Hypotheses |
|
|
80 | (2) |
|
4.4 Locally Most Powerful Test |
|
|
82 | (2) |
|
4.5 Generalized Likelihood Ratio Test |
|
|
84 | (3) |
|
4.5.1 GLRT for Gaussian Hypothesis Testing |
|
|
84 | (2) |
|
4.5.2 GLRT for Cauchy Hypothesis Testing |
|
|
86 | (1) |
|
4.6 Random versus Nonrandom Θ |
|
|
87 | (1) |
|
|
88 | (2) |
|
4.8 Composite m-ary Hypothesis Testing |
|
|
90 | (2) |
|
|
90 | (1) |
|
4.8.2 Non-Dominated Tests |
|
|
91 | (1) |
|
|
92 | (1) |
|
4.9 Robust Hypothesis Testing |
|
|
92 | (7) |
|
4.9.1 Robust Detection with Conditionally Independent Observations |
|
|
96 | (1) |
|
4.9.2 Epsilon-Contamination Class |
|
|
97 | (2) |
|
|
99 | (4) |
|
|
103 | (2) |
|
|
105 | (40) |
|
|
105 | (1) |
|
|
106 | (1) |
|
5.3 Detection of Known Signal in Independent Noise |
|
|
107 | (5) |
|
5.3.1 Signal in i.i.d. Gaussian Noise |
|
|
107 | (1) |
|
5.3.2 Signal in i.i.d. Laplacian Noise |
|
|
108 | (2) |
|
5.3.3 Signal in i.i.d. Cauchy Noise |
|
|
110 | (1) |
|
5.3.4 Approximate NP Test |
|
|
111 | (1) |
|
5.4 Detection of Known Signal in Correlated Gaussian Noise |
|
|
112 | (3) |
|
5.4.1 Reduction to i.i.d. Noise Case |
|
|
113 | (1) |
|
5.4.2 Performance Analysis |
|
|
114 | (1) |
|
5.5 m-ary Signal Detection |
|
|
115 | (2) |
|
5.5.1 Bayes Classification Rule |
|
|
116 | (1) |
|
5.5.2 Performance Analysis |
|
|
116 | (1) |
|
|
117 | (3) |
|
|
118 | (1) |
|
|
118 | (2) |
|
5.7 Detection of Gaussian Signals in Gaussian Noise |
|
|
120 | (7) |
|
5.7.1 Detection of a Gaussian Signal in White Gaussian Noise |
|
|
121 | (1) |
|
5.7.2 Detection of i.i.d. Zero-Mean Gaussian Signal |
|
|
122 | (1) |
|
5.7.3 Diagonalization of Signal Covariance |
|
|
123 | (2) |
|
5.7.4 Performance Analysis |
|
|
125 | (1) |
|
5.7.5 Gaussian Signals With Nonzero Mean |
|
|
126 | (1) |
|
5.8 Detection of Weak Signals |
|
|
127 | (1) |
|
5.9 Detection of Signal with Unknown Parameters in White Gaussian Noise |
|
|
128 | (7) |
|
|
129 | (1) |
|
5.9.2 Linear Gaussian Model |
|
|
130 | (1) |
|
5.9.3 Nonlinear Gaussian Model |
|
|
130 | (2) |
|
5.9.4 Discrete Parameter Set |
|
|
132 | (3) |
|
5.10 Deflection-Based Detection of Non-Gaussian Signal in Gaussian Noise |
|
|
135 | (4) |
|
|
139 | (4) |
|
|
143 | (2) |
|
6 Convex Statistical Distances |
|
|
145 | (15) |
|
6.1 Kullback-Leibler Divergence |
|
|
145 | (2) |
|
6.2 Entropy and Mutual Information |
|
|
147 | (2) |
|
6.3 Chernoff Divergence, Chernoff Information, and Bhattacharyya Distance |
|
|
149 | (2) |
|
|
151 | (4) |
|
6.5 Some Useful Inequalities |
|
|
155 | (1) |
|
|
156 | (2) |
|
|
158 | (2) |
|
7 Performance Bounds for Hypothesis Testing |
|
|
160 | (24) |
|
7.1 Simple Lower Bounds on Conditional Error Probabilities |
|
|
160 | (2) |
|
7.2 Simple Lower Bounds on Error Probability |
|
|
162 | (1) |
|
|
163 | (4) |
|
7.3.1 Moment-Generating and Cumulant-Generating Functions |
|
|
163 | (1) |
|
|
164 | (3) |
|
7.4 Application of Chernoff Bound to Binary Hypothesis Testing |
|
|
167 | (6) |
|
7.4.1 Exponential Upper Bounds on PF and PM |
|
|
168 | (2) |
|
7.4.2 Bayesian Error Probability |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
172 | (1) |
|
7.5 Bounds on Classification Error Probability |
|
|
173 | (5) |
|
7.5.1 Upper and Lower Bounds in Terms of Pairwise Error Probabilities |
|
|
173 | (3) |
|
7.5.2 Bonferroni's Inequalities |
|
|
176 | (1) |
|
7.5.3 Generalized Fano's Inequality |
|
|
176 | (2) |
|
7.6 Appendix: Proof of Theorem 7.4 |
|
|
178 | (3) |
|
|
181 | (2) |
|
|
183 | (1) |
|
8 Large Deviations and Error Exponents for Hypothesis Testing |
|
|
184 | (24) |
|
|
184 | (1) |
|
8.2 Chernoff Bound for Sum of i.i.d. Random Variables |
|
|
185 | (2) |
|
|
185 | (1) |
|
8.2.2 Why is the Central Limit Theorem Inapplicable Here? |
|
|
186 | (1) |
|
8.3 Hypothesis Testing with i.i.d. Observations |
|
|
187 | (7) |
|
8.3.1 Bayesian Hypothesis Testing with i.i.d. Observations |
|
|
188 | (1) |
|
8.3.2 Neyman-Pearson Hypothesis Testing with i.i.d. Observations |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
191 | (3) |
|
8.4 Refined Large Deviations |
|
|
194 | (8) |
|
8.4.1 The Method of Exponential Tilting |
|
|
194 | (1) |
|
8.4.2 Sum of i.i.d. Random Variables |
|
|
195 | (3) |
|
8.4.3 Lower Bounds on Large-Deviations Probabilities |
|
|
198 | (1) |
|
8.4.4 Refined Asymptotics for Binary Hypothesis Testing |
|
|
199 | (1) |
|
8.4.5 Non-i.i.d. Components |
|
|
200 | (2) |
|
8.5 Appendix: Proof of Lemma 8.1 |
|
|
202 | (1) |
|
|
203 | (3) |
|
|
206 | (2) |
|
9 Sequential and Quickest Change Detection |
|
|
208 | (23) |
|
|
208 | (9) |
|
9.1.1 Problem Formulation |
|
|
208 | (1) |
|
9.1.2 Stopping Times and Decision Rules |
|
|
209 | (1) |
|
9.1.3 Two Formulations of the Sequential Hypothesis Testing Problem |
|
|
209 | (1) |
|
9.1.4 Sequential Probability Ratio Test |
|
|
210 | (2) |
|
9.1.5 SPRT Performance Evaluation |
|
|
212 | (5) |
|
9.2 Quickest Change Detection |
|
|
217 | (10) |
|
9.2.1 Minimax Quickest Change Detection |
|
|
219 | (4) |
|
9.2.2 Bayesian Quickest Change Detection |
|
|
223 | (4) |
|
|
227 | (2) |
|
|
229 | (2) |
|
10 Detection of Random Processes |
|
|
231 | (26) |
|
10.1 Discrete-Time Random Processes |
|
|
231 | (7) |
|
10.1.1 Periodic Stationary Gaussian Processes |
|
|
232 | (2) |
|
10.1.2 Stationary Gaussian Processes |
|
|
234 | (1) |
|
|
235 | (3) |
|
10.2 Continuous-Time Processes |
|
|
238 | (10) |
|
|
239 | (1) |
|
10.2.2 Karhunen-Loeve Transform |
|
|
240 | (4) |
|
10.2.3 Detection of Known Signals in Gaussian Noise |
|
|
244 | (2) |
|
10.2.4 Detection of Gaussian Signals in Gaussian Noise |
|
|
246 | (2) |
|
|
248 | (2) |
|
|
250 | (3) |
|
|
250 | (2) |
|
10.4.2 Ali-Silvey Distances |
|
|
252 | (1) |
|
10.5 Appendix: Proof of Proposition 10.1 |
|
|
253 | (1) |
|
|
254 | (2) |
|
|
256 | (1) |
Part II Estimation |
|
257 | (127) |
|
11 Bayesian Parameter Estimation |
|
|
259 | (21) |
|
|
259 | (1) |
|
11.2 Bayesian Parameter Estimation |
|
|
259 | (1) |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
263 | (2) |
|
11.6 Parameter Estimation for Linear Gaussian Models |
|
|
265 | (1) |
|
11.7 Estimation of Vector Parameters |
|
|
266 | (4) |
|
11.7.1 Vector MMSE Estimation |
|
|
267 | (1) |
|
11.7.2 Vector MMAE Estimation |
|
|
267 | (1) |
|
11.7.3 Vector MAP Estimation |
|
|
267 | (1) |
|
11.7.4 Linear MMSE Estimation |
|
|
268 | (1) |
|
11.7.5 Vector Parameter Estimation in Linear Gaussian Models |
|
|
269 | (1) |
|
11.7.6 Other Cost Functions for Bayesian Estimation |
|
|
270 | (1) |
|
11.8 Exponential Families |
|
|
270 | (6) |
|
|
271 | (2) |
|
|
273 | (3) |
|
|
276 | (3) |
|
|
279 | (1) |
|
12 Minimum Variance Unbiased Estimation |
|
|
280 | (17) |
|
12.1 Nonrandom Parameter Estimation |
|
|
280 | (1) |
|
12.2 Sufficient Statistics |
|
|
281 | (2) |
|
12.3 Factorization Theorem |
|
|
283 | (1) |
|
12.4 Rao-Blackwell Theorem |
|
|
284 | (2) |
|
12.5 Complete Families of Distributions |
|
|
286 | (5) |
|
12.5.1 Link Between Completeness and Sufficiency |
|
|
288 | (1) |
|
12.5.2 Link Between Completeness and MVUE |
|
|
289 | (1) |
|
12.5.3 Link Between Completeness and Exponential Families |
|
|
289 | (2) |
|
|
291 | (1) |
|
12.7 Examples: Gaussian Families |
|
|
291 | (3) |
|
|
294 | (2) |
|
|
296 | (1) |
|
13 Information Inequality and Cramer-Rao Lower Bound |
|
|
297 | (22) |
|
13.1 Fisher Information and the Information Inequality |
|
|
297 | (3) |
|
13.2 Cramer-Rao Lower Bound |
|
|
300 | (2) |
|
13.3 Properties of Fisher Information |
|
|
302 | (3) |
|
13.4 Conditions for Equality in Information Inequality |
|
|
305 | (1) |
|
|
306 | (5) |
|
13.6 Information Inequality for Random Parameters |
|
|
311 | (1) |
|
|
312 | (2) |
|
13.8 Appendix: Derivation of (13.16) |
|
|
314 | (1) |
|
|
315 | (3) |
|
|
318 | (1) |
|
14 Maximum Likelihood Estimation |
|
|
319 | (39) |
|
|
319 | (1) |
|
14.2 Computation of ML Estimates |
|
|
320 | (2) |
|
14.3 Invariance to Reparameterization |
|
|
322 | (1) |
|
14.4 MLE in Exponential Families |
|
|
323 | (4) |
|
14.4.1 Mean-Value Parameterization |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
325 | (2) |
|
14.5 Estimation of Parameters on Boundary |
|
|
327 | (2) |
|
14.6 Asymptotic Properties for General Families |
|
|
329 | (5) |
|
|
329 | (2) |
|
14.6.2 Asymptotic Efficiency and Normality |
|
|
331 | (3) |
|
14.7 Nonregular ML Estimation Problems |
|
|
334 | (1) |
|
|
335 | (3) |
|
14.9 Non-i.i.d. Observations |
|
|
338 | (1) |
|
14.10 M-Estimators and Least-Squares Estimators |
|
|
338 | (1) |
|
14.11 Expectation-Maximization (EM) Algorithm |
|
|
339 | (8) |
|
14.11.1 General Structure of the EM Algorithm |
|
|
340 | (1) |
|
14.11.2 Convergence of EM Algorithm |
|
|
341 | (1) |
|
|
341 | (6) |
|
14.12 Recursive Estimation |
|
|
347 | (3) |
|
|
347 | (2) |
|
14.12.2 Recursive Approximations to Least-Squares Solution |
|
|
349 | (1) |
|
14.13 Appendix: Proof of Theorem 14.2 |
|
|
350 | (1) |
|
14.14 Appendix: Proof of Theorem 14.4 |
|
|
351 | (1) |
|
|
352 | (4) |
|
|
356 | (2) |
|
|
358 | (26) |
|
|
358 | (2) |
|
15.2 Discrete-Time Kalman Filter |
|
|
360 | (7) |
|
15.2.1 Time-Invariant Case |
|
|
365 | (2) |
|
15.3 Extended Kalman Filter |
|
|
367 | (2) |
|
15.4 Nonlinear Filtering for General Hidden Markov Models |
|
|
369 | (3) |
|
15.5 Estimation in Finite Alphabet Hidden Markov Models |
|
|
372 | (9) |
|
|
373 | (2) |
|
15.5.2 Forward-Backward Algorithm |
|
|
375 | (3) |
|
15.5.3 Baum-Welch Algorithm for HMM Learning |
|
|
378 | (3) |
|
|
381 | (2) |
|
|
383 | (1) |
Appendix A Matrix Analysis |
|
384 | (6) |
Appendix B Random Vectors and Covariance Matrices |
|
390 | (1) |
Appendix C Probability Distributions |
|
391 | (2) |
Appendix D Convergence of Random Sequences |
|
393 | (2) |
Index |
|
395 | |