Muutke küpsiste eelistusi

E-raamat: Statistical and Machine Learning Approaches for Network Analysis

(Natural Resources Research Institute, USA), (Center for Integrative Bioinformatics, Vienna, Austria)
  • Formaat - PDF+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As the editors note in their preface, network analysis has become an emerging trend in several scientific disciplines. This work brings together a number of theoretical disciplines like graph theory, machine learning, and statistical data analysis to examine complex networks with an interdisciplinary approach using machine learning tools. Topics include a survey of computational approaches to reconstruct and partition biological networks, modeling for evolving biological networks, the structure of an evolving random bipartite graph, and network-based information synergy analysis for Alzheimer disease. The well-illustrated book includes extensive references, and while technical, the writing is direct. Editors are Dehmer (Institute for Bioinformatics and Transformational Research, U. for Health Sciences, Austria), and Basak (Natural Resources Research Institute). Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Explore the multidisciplinary nature of complex networks through machine learning techniques

Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks.

Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include:

  • A survey of computational approaches to reconstruct and partition biological networks
  • An introduction to complex networks measures, statistical properties, and models
  • Modeling for evolving biological networks
  • The structure of an evolving random bipartite graph
  • Density-based enumeration in structured data
  • Hyponym extraction employing a weighted graph kernel

Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.

Preface ix
Contributors xi
1 A Survey of Computational Approaches to Reconstruct and Partition Biological Networks
1(44)
Lipi Acharya
Thair Judeh
Dongxiao Zhu
2 Introduction to Complex Networks: Measures, Statistical Properties, and Models
45(32)
Kazuhiro Takemoto
Chikoo Oosawa
3 Modeling for Evolving Biological Networks
77(32)
Kazuhiro Takemoto
Chikoo Oosawa
4 Modularity Configurations in Biological Networks with Embedded Dynamics
109(22)
Enrico Capobianco
Antonella Travaglione
Elisabetta Marras
5 Influence of Statistical Estimators on the Large-Scale Causal Inference of Regulatory Networks
131(22)
Ricardo de Matos Simoes
Frank Emmert-Streib
6 Weighted Spectral Distribution: A Metric for Structural Analysis of Networks
153(38)
Damien Fay
Hamed Haddadi
Andrew W. Moore
Richard Mortier
Andrew G. Thomason
Steve Uhlig
7 The Structure of an Evolving Random Bipartite Graph
191(26)
Reinhard Kutzelnigg
8 Graph Kernels
217(28)
Matthias Rupp
9 Network-Based Information Synergy Analysis for Alzheimer Disease
245(16)
Xuewei Wang
Hirosha Geekiyanage
Christina Chan
10 Density-Based Set Enumeration in Structured Data
261(42)
Elisabeth Georgii
Koji Tsuda
11 Hyponym Extraction Employing a Weighted Graph Kernel
303(24)
Tim vor der Bruck
Index 327
MATTHIAS DEHMER, PHD, is Head of the Institute for Bioinformatics and Trans- lational Research at the University for Health Sciences, Medical Informatics and Technology (Austria). He has written over 130 publications in his research areas, which include bioinformatics, systems biology, and applied discrete mathematics. Dr. Dehmer is also the coeditor of Applied Statistics for Network Biology, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Medical Biostatistics for Complex Diseases, Analysis of Complex Networks, and Analysis of Microarray Data, all published by Wiley.

SUBHASH C. BASAK, PHD, is Senior Research Associate at the Natural Resources Research Institute. He has published extensively in the areas of biochemical pharmacology, toxicology, mathematical chemistry, and computational chemistry.