Muutke küpsiste eelistusi

E-raamat: Statistical Mechanics of Lattice Systems: Volume 1: Closed-Form and Exact Solutions

  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Most of the interesting and difficult problems in statistical mechanics arise when the constituent particles of the system interact with each other with pair or multi particle energies. The types of behaviour which occur in systems because of these interactions are referred to as cooperative phenomena giving rise in many cases to phase transitions. This book and its companion volume (Lavis and Bell 1999, referred to in the text simply as Volume 2) are princi­ pally concerned with phase transitions in lattice systems. Due mainly to the insights gained from scaling theory and renormalization group methods, this 1 subject has developed very rapidly over the last thirty years. In our choice of topics we have tried to present a good range of fundamental theory and of applications, some of which reflect our own interests. A broad division of material can be made between exact results and ap­ proximation methods. We have found it appropriate to include some of our discussion of exact results in this volume and some in Volume 2. The other main area of discussion in this volume is mean-field theory leading to closed­ form approximations. Although this is known not to give reliable results close to a critical region, it often provides a good qualitative picture for phase dia­ grams as a whole. For complicated systems some kind of mean-field method is often the only tractable method available.
Introduction to Thermodynamics and Phase Transitions
1(30)
Thermodynamic Variables: Simple Fluids
1(2)
Change of Variable and Thermodynamic Potentials
3(1)
Response Functions and Thermodynamic Relations
4(2)
Magnetic Systems
6(1)
Stationary Properties of Thermodynamic Functions
7(2)
Phase Equillibrium in the Van der Waals Gas
9(3)
The Field-Extensive Variable Representation of Thermodynamics
12(4)
The Field-Density Representation of Thermodynamics
16(2)
General Theory of Phase Equilibrium
18(5)
A One-Component Fluid
19(3)
Azeotropy
22(1)
Classical Theory and Metastability
23(8)
Metastability in a One-Component Fluid
25(2)
The Experimental Situation
27(1)
Examples
28(3)
Statistical Mechanics and the One-Dimensional Ising Model
31(36)
The Canonical Distribution
31(4)
The Thermodynamic Limit
33(1)
Kinetic and Configuration Variables
33(2)
Distributions in General
35(4)
Particular Distributions
39(3)
The Constant Magnetic Field Distribution
39(1)
The Constant-Pressure (Isobaric) Distribution
39(1)
The Grand Distribution
40(1)
Restricted Distributions for Lattice Models
40(2)
Magnetism and the Ising Model
42(7)
The One-Dimensional Ferromagnet in Zero Field
44(3)
The One-Dimensional Ferromagnet in a Field
47(2)
Fluctuations and Entropy
49(4)
The Maximum-Term Method
53(4)
The One-Dimensional Ising Ferromagnet
54(2)
The General Distribution
56(1)
A One-Dimensional Model for DNA Denaturation
57(10)
Examples
63(4)
The Mean-Field Approximation, Scaling and Critical Exponents
67(26)
The Ising Model Ferromagnet
67(9)
Free Energy and Magnetization
68(3)
Fluctuations in Zero field
71(5)
Interpretations of the Mean-Field Method
76(2)
Many-Neighbour Interactions and the Lebowitz-Penrose Theorem
76(1)
A Distance-Independent Interaction
77(1)
The Mean-Field Method for a More General Model
78(1)
Critical Points and Critical Exponents
79(5)
Scaling and Exponent Relations
84(2)
Classical Critical Exponents
86(7)
The Ising Model Ferromagnet: Mean-Field Approximation
87(1)
The Van der Waals Gas
88(2)
Examples
90(3)
Antiferromagnets and Other Magnetic Systems
93(26)
The One-Dimensional Antiferromagnet
93(1)
Antiferromagnetic Ising Models
94(5)
Mean-Field Theory
99(6)
The Paramagnetic State
100(1)
The Antiferromagnetic State
101(2)
The Simple Antiferromagnet
103(2)
Metamagnetism: Tricritical Points and Critical End-Points
105(5)
Ferrimagnetism: Compensation Points
110(9)
Zero Field
113(1)
Non-Zero Field
114(3)
Examples
117(2)
Lattice Gases
119(16)
Introduction
119(2)
The One-Dimensional Lattice Gas and the Continuous Limit
121(4)
The Lattice Gas
121(3)
The Continuum Limit
124(1)
The Simple Lattice Gas and the Ising Model
125(2)
Phase Separation in the Simple Lattice Gas
127(1)
A One-Dimensional Water-Like Model
128(7)
Examples
132(3)
Solid Mixtures and the Dilute Ising Model
135(38)
The Restricted Grand Partition Fuction
135(1)
Binary Mixtures
136(2)
The Equivalence to the Ising Model
137(1)
The Equivalence to a Lattice Gas
138(1)
Order-Disorder on Loose-Packed Lattices
138(3)
The Order Parameter and Landau Expansion
141(3)
First-Order Sublattice Transitions
144(3)
The Equilibrium Dilute Ising Model and Equivalent Models
147(4)
The Equilibrium Dilute Ising Model
147(2)
The Ising Model Lattice Gas
149(1)
The Symmetrical Ternary Solid Mixture
149(1)
The Symmetrical Lattice Gas Mixture
150(1)
Other Models
151(1)
Applications
151(1)
Mean-Field Theory and the Dilute Ising Model
151(3)
Multicritical Points in the Dilute Ising Model
154(4)
Multicritical Phenomena with Additional Thermodynamic Dimension
158(5)
The Unsymmetrical and Completely Symmetrical Models
163(3)
Alternatives Forms for the Dilute Ising Model
166(7)
Equilibrium Bond Dilution
166(1)
Random Site Dilution
167(1)
Random Bond Dilution
167(1)
Equilibrium Site Dilution ε < 0
168(1)
Examples
169(4)
Cluster Variation Methods
173(32)
Introduction
173(1)
A First-Order Method Using a General Site Group
174(4)
Equivalent Sites
174(3)
Sublattice Ordering
177(1)
The Pair Approximation and the Ising Model
178(3)
Zero Field
179(1)
The Critical Region
180(1)
The Linear Lattice
181(1)
Phase Transitions in Amphipathic Monolayers
181(6)
A Lattice Gas Model for Fluid Water
187(6)
Ordering on the Face-Centred Cubic Lattice
193(4)
Homogeneous Cacti
197(8)
Examples
200(5)
Exact Results for Two-Dimensional Ising Models
205(36)
Introduction
205(1)
The Low-Temperature Form and the Dual Lattice
206(2)
The High-Temperature Form and the Dual Transformation
208(3)
The Star-Triangle Transformation
211(3)
The Star-Triangle Transformation with Unequal Interactions
214(2)
A Linear Relation for Correlations
216(2)
Baxter and Enting's Transformation and the Functional Equation
218(2)
The Solution of the Functional Equation
220(6)
A Preliminary Result of f (K&varbar;κ)
221(2)
Expressions for A(∞&varbar;κ) and B (∞&varbar;κ)
223(1)
An Expression for b(κ)
224(2)
Critical Behaviour
226(3)
Thermodynamic Functions for the Square Lattice
229(3)
Thermodynamic Functions for the Triangular and Honeycomb Lattices
232(3)
The Antiferromagnet
235(6)
Examples
238(3)
Applications of Transform Methods
241(52)
The Decoration Transformation
241(3)
Dilute Decorated Models
244(2)
A Suprexchange Model
244(1)
The Equilibrium Bond Dilute Ising Model
245(1)
Heat Capacity and Exponent Renormalization
246(5)
Three-Dimensional Lattices
247(3)
Two-Dimensional Lattices
250(1)
Fisher's Decorated Antiferromagnetic Model
251(5)
The Decorated Lattice Ferrimagnet
256(6)
The Kagome Lattice Ising Model
262(2)
A Modified Star-Triangle Transformation and Three-Spin Correlation
264(2)
The Star-Triangle Ferrimagnet
266(2)
The Unsymmetrical Ising Model
268(3)
A Competing Interaction Magnetic Model
271(2)
Decorated Lattice Mixtures of Orientable Molecules
273(5)
The Decorated Lattice Gas
278(11)
General Properties
278(3)
A Water-Like Model
281(2)
Maxithermal, Critical Double and Cuspoidal Points
283(6)
Decorated Lattice Gas Mixtures
289(4)
Examples
290(3)
The Six-Vertex Model
293(42)
Two-Dimensional Ice-Rule Models
293(2)
Parameter Space
295(2)
Graphical Representation and Ground States
297(2)
Free Energy and Transfer Matrices
299(2)
Transfer Matrix Eigenvalues
301(5)
The Case n = 0
302(1)
The Case n = 1
302(2)
The General n Case
304(2)
The Low-Temperature Frozen Ferroelectric State
306(1)
Wave-Number Density
307(2)
The Solution of the Integral Equation for -1 < Δ < 1
309(2)
The Free Energy of the Disordered State
311(2)
The KDP Model
312(1)
Square Ice
312(1)
Non-Zero Polarization
313(1)
The Ferroelectric Transition in Zero Field
313(3)
The Antiferroelecrtic State
316(3)
Fild-Induced Transitions to the Completely Polarized State
319(3)
An Antiferroelectric in an Electric Field
322(3)
The Potts Model
325(10)
The Staggered Six-Vertex Model
326(3)
The Solvable Case ΞhΞ = 1
329(1)
The Solvabel Case ΞhΞv = -1
330(1)
The Polarization and Internal Energy
331(1)
Critical Exponents
332(1)
Examples
332(3)
A. Appendices 335(16)
A.1 Regular Lattices
335(2)
A.2 Elliptic Integrals and Functions
337(5)
A.2.1 Eiiliptic Integrals
338(1)
A.2.2 Elliptic Functions
339(1)
A.2.3 Results Required for
Chapter 8
340(2)
A.3 The Water Molecule and Hydrogen Bonding
342(2)
A.4 Results for the Six-Vertex Model
344(5)
A.4.1 The Proof of I
345(1)
A.4.2 The Proof of II
345(1)
A.4.3 The Proof of III
345(3)
A.4.4 The Proof of IV
348(1)
A.5 Fourier Transforms and Series
349(2)
A.5.1 Fourier Transforms
349(1)
A.5.2 Fourier Series
349(2)
References and Author Index 351(14)
Subject Index 365