Preface |
|
xvii | |
About the Editors |
|
xix | |
Contributors |
|
xxi | |
I Introduction |
|
1 | (12) |
|
1 Materials Science vs. Data Science |
|
|
3 | (10) |
|
|
|
|
II Emerging Data Science in Microstructure Characterization |
|
13 | (68) |
|
2 Emerging Digital Data Capabilities |
|
|
17 | (10) |
|
|
|
17 | (2) |
|
2.2 Benefits of Large Data Volumes |
|
|
19 | (2) |
|
2.3 Challenges of Large Data Volumes |
|
|
21 | (1) |
|
|
22 | (3) |
|
2.4.1 Multi-Instrument Coordination |
|
|
23 | (1) |
|
2.4.2 Upstream Data Analysis |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (2) |
|
|
27 | (20) |
|
|
|
|
3.1 What Makes Modern Image Processing So Modern? |
|
|
27 | (1) |
|
3.2 Language of Image Processing |
|
|
28 | (11) |
|
3.2.1 Notational Differences |
|
|
28 | (1) |
|
|
28 | (1) |
|
3.2.1.2 Operations on Sets |
|
|
29 | (1) |
|
3.2.1.3 Computations on Sets |
|
|
31 | (1) |
|
3.2.2 Bayesian Probability and Image Processing |
|
|
32 | (1) |
|
3.2.2.1 Modern Probability and Sets |
|
|
33 | (1) |
|
3.2.2.2 Foundational Rules of Modern Probability |
|
|
33 | (1) |
|
3.2.2.3 Mathematical Constructs |
|
|
35 | (1) |
|
3.2.2.4 Bayesian Probability in Image Processing |
|
|
36 | (3) |
|
3.3 Language of Materials Science |
|
|
39 | (7) |
|
3.3.1 Thermodynamic Phases |
|
|
39 | (3) |
|
|
42 | (4) |
|
|
46 | (1) |
|
|
47 | (16) |
|
|
4.1 What Is Forward Modeling? |
|
|
47 | (4) |
|
4.1.1 What Are the Unknowns in Materials Characterization? |
|
|
47 | (2) |
|
4.1.2 A Schematic Description of Forward Modeling |
|
|
49 | (2) |
|
4.2 A Brief Overview of Electron Scattering Modalities |
|
|
51 | (1) |
|
|
52 | (10) |
|
4.3.1 Electron Backscatter Diffraction |
|
|
52 | (1) |
|
4.3.1.1 BSE Monte Carlo Simulations |
|
|
52 | (1) |
|
4.3.1.2 Dynamical Scattering Simulations |
|
|
54 | (1) |
|
4.3.1.3 Detector Parameters |
|
|
55 | (1) |
|
4.3.2 Lorentz Vector Field Electron Tomography |
|
|
56 | (1) |
|
4.3.2.1 Lorentz Forward Model |
|
|
56 | (1) |
|
4.3.2.2 Electron Wave Phase Shift Computations |
|
|
57 | (1) |
|
4.3.2.3 Example Lorentz Image Simulation |
|
|
61 | (1) |
|
|
62 | (1) |
|
5 Inverse Problems and Sensing |
|
|
63 | (18) |
|
|
|
63 | (1) |
|
5.2 Traditional Approaches to Inversion |
|
|
63 | (4) |
|
5.3 Bayesian and Regularized Approaches to Inversion |
|
|
67 | (4) |
|
5.4 Why Does Bayesian Estimation Work? |
|
|
71 | (4) |
|
5.5 Model-Based Reconstruction |
|
|
75 | (2) |
|
5.6 Successes and Opportunities of Bayesian Inversion |
|
|
77 | (4) |
III Inverse Methods for Analysis of Data |
|
81 | (62) |
|
6 Model-Based Iterative Reconstruction for Electron Tomography |
|
|
85 | (26) |
|
Singanallur Venkatakrishnan |
|
|
|
|
85 | (1) |
|
6.2 Model-Based Iterative Reconstruction |
|
|
86 | (2) |
|
6.3 High-Angle Annular Dark-Field STEM Tomography |
|
|
88 | (8) |
|
6.3.1 HAADF-STEM Forward Model |
|
|
88 | (2) |
|
|
90 | (1) |
|
6.3.3 Cost Function Formulation and Optimization Algorithm |
|
|
91 | (2) |
|
6.3.4 Experimental Results |
|
|
93 | (1) |
|
6.3.4.1 Simulated Dataset |
|
|
93 | (1) |
|
6.3.4.2 Experimental Dataset |
|
|
95 | (1) |
|
6.4 Bright-Field Electron Tomography |
|
|
96 | (11) |
|
6.4.1 BF-TEM Forward Model and Cost Function Formulation |
|
|
97 | (1) |
|
6.4.1.1 Generalized Huber Functions for Anomaly Modeling |
|
|
98 | (1) |
|
6.4.1.2 MBIR Cost Formulation |
|
|
100 | (1) |
|
|
100 | (1) |
|
6.4.2.1 Simulated Dataset |
|
|
101 | (1) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (3) |
|
7 Statistical Reconstruction and Heterogeneity Characterization in 3-D Biological Macromolecular Complexes |
|
|
111 | (16) |
|
|
|
|
111 | (2) |
|
7.2 Statistical 3-D Signal Reconstruction of Macromolecular Complexes |
|
|
113 | (7) |
|
|
113 | (1) |
|
|
113 | (2) |
|
7.2.3 Relationship between the Moments of the Weights and the Moments of the Electron Scattering Intensity |
|
|
115 | (1) |
|
7.2.4 Estimation Criterion |
|
|
115 | (1) |
|
7.2.4.1 q as a Function of oc, oV, oQ |
|
|
116 | (1) |
|
7.2.4.2 c, V, and Q as a Function of oc, oV, oQ |
|
|
116 | (1) |
|
7.2.4.3 c as a Function of V, Q, oc, oV, oQ |
|
|
117 | (1) |
|
7.2.4.4 V as a Function of a, Q, oa, oV, oQ |
|
|
117 | (1) |
|
7.2.4.5 Q as a Function of V, c, oc, oV, oQ |
|
|
118 | (1) |
|
7.2.5 Relationship with Other Results |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
7.2.8 Estimation of the a priori Probability Distribution on the Nuisance Parameters |
|
|
119 | (1) |
|
7.2.9 Pre- and Post-Processing |
|
|
119 | (1) |
|
|
120 | (3) |
|
7.3.1 Flock House Virus (FHV) |
|
|
120 | (1) |
|
7.3.2 Nudaurelia Capensis (ω Virus (NωV) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (2) |
|
7.4.1 Challenges and Future Directions |
|
|
123 | (2) |
|
|
125 | (2) |
|
8 Object Tracking through Image Sequences |
|
|
127 | (16) |
|
|
|
|
|
|
8.1 Tracking and Kalman Filters |
|
|
128 | (1) |
|
8.2 Fiber Tracking Using the Kalman Filter |
|
|
129 | (4) |
|
|
130 | (1) |
|
|
131 | (1) |
|
8.2.3 Multiple Fiber Association |
|
|
131 | (2) |
|
8.3 Tracking Performance Evaluation |
|
|
133 | (3) |
|
8.4 Testing Data and Sparse Sampling |
|
|
136 | (1) |
|
|
137 | (4) |
|
8.6 Other Tracking Methods |
|
|
141 | (1) |
|
|
141 | (2) |
IV Structure Formation in Materials |
|
143 | (58) |
|
9 Grain Boundary Characteristics |
|
|
147 | (16) |
|
|
|
|
147 | (1) |
|
9.2 Grain Boundary Representation |
|
|
148 | (1) |
|
9.2.1 The Crystallographic Lattice Misorientation |
|
|
148 | (1) |
|
9.2.2 Grain Boundary Plane Orientation |
|
|
148 | (1) |
|
9.3 Representation of the GBCD |
|
|
149 | (2) |
|
9.4 Measurement of the Grain Boundary Plane Distribution |
|
|
151 | (1) |
|
9.4.1 The Relative Grain Boundary Character Distribution |
|
|
151 | (1) |
|
9.4.2 The Relative Grain Boundary Planes Energy Distribution |
|
|
152 | (1) |
|
9.5 Grain Boundary Plane Anisotropy |
|
|
152 | (1) |
|
9.6 Influence of Parameters on the GBCD |
|
|
153 | (5) |
|
9.6.1 Intrinsic Parameters |
|
|
154 | (1) |
|
9.6.1.1 Alloy Composition |
|
|
154 | (1) |
|
9.6.1.2 Crystal Structure |
|
|
155 | (1) |
|
9.6.2 Extrinsic Parameters |
|
|
155 | (1) |
|
|
155 | (1) |
|
9.6.2.2 Thermomechanical Processing |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
9.6.2.5 Transformation Path |
|
|
158 | (1) |
|
9.7 Grain Boundary Network |
|
|
158 | (3) |
|
9.7.1 Grain Boundary Correlation Number |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
9.8 Summary and Current Challenges |
|
|
161 | (2) |
|
10 Interface Science and the Formation of Structure |
|
|
163 | (20) |
|
|
|
|
163 | (1) |
|
10.2 Effect of Interface Energy on Triple Junction Geometry |
|
|
163 | (5) |
|
10.3 Effect of Energy Anisotropy on Crystal Shape |
|
|
168 | (3) |
|
10.4 Effect of Interface Energy on Wetting |
|
|
171 | (3) |
|
|
171 | (2) |
|
10.4.2 Triple-Junction Wetting |
|
|
173 | (1) |
|
10.5 Changes Due to Thermodynamic State Variables |
|
|
174 | (7) |
|
10.5.1 Variation of Interfacial Energy with Thermodynamic State Variables |
|
|
174 | (2) |
|
10.5.2 Interface Complexions and Transitions: Thermodynamics |
|
|
176 | (3) |
|
10.5.3 Effects of Complexion Transitions on Microstructure Formation and Evolution: The Kinetic Aspect |
|
|
179 | (2) |
|
|
181 | (2) |
|
11 Hierarchical Assembled Structures from Nanoparticles |
|
|
183 | (18) |
|
|
|
|
11.1 Fundamentals of Nanostructure Assembly |
|
|
183 | (1) |
|
11.2 Light Scattering and Surface Plasmons |
|
|
183 | (7) |
|
|
185 | (2) |
|
11.2.2 Plasmon-Exciton Coupling |
|
|
187 | (2) |
|
11.2.3 Assembly of NPs, Thermodynamics, DLVO Theory, and Extended DLVO |
|
|
189 | (1) |
|
11.3 Directed Assembly and Self-Assembly of NPs |
|
|
190 | (6) |
|
11.3.1 Assemblies in Solution |
|
|
191 | (4) |
|
11.3.2 Assemblies on Surfaces |
|
|
195 | (1) |
|
11.4 Complex Architectures for Metamaterials |
|
|
196 | (1) |
|
11.5 Future Opportunities |
|
|
197 | (9) |
|
|
197 | (2) |
|
11.5.2 Scanning Transmission Electron Microscopy/Electron Energy Loss Spectroscopy (STEM/EELS) |
|
|
199 | (1) |
|
11.5.3 In-Situ Characterization |
|
|
199 | (1) |
|
|
199 | (2) |
V Microstructure |
|
201 | (118) |
|
12 Estimating Orientation Statistics |
|
|
205 | (18) |
|
|
12.1 Orientations and Orientation Distributions |
|
|
206 | (2) |
|
12.1.1 Formal Definition of the ODF |
|
|
206 | (1) |
|
12.1.2 Metrics on the ODF |
|
|
207 | (1) |
|
12.2 Non-Parametric Estimation |
|
|
208 | (5) |
|
12.2.1 Generalized Spherical Harmonics for the Estimation of Mesoscale ODFs |
|
|
209 | (1) |
|
12.2.2 Spatial Statistics of Orientations |
|
|
210 | (3) |
|
12.3 Parametric Estimation of Orientation Distributions |
|
|
213 | (5) |
|
12.3.1 Bingham and Von Mises Fisher Distributions |
|
|
214 | (1) |
|
12.3.2 Symmetrized Probability Distributions |
|
|
215 | (2) |
|
12.3.3 EM-ML Algorithm for Parameter Estimation |
|
|
217 | (1) |
|
12.4 Brief Discussion and Conclusions |
|
|
218 | (1) |
|
12.5 Appendix A: Quaternion Representation of Orientations |
|
|
219 | (1) |
|
12.6 Appendix B: Bunge-Euler Angles |
|
|
220 | (2) |
|
12.7 Appendix C: Useful Properties of Generalized Spherical Harmonics |
|
|
222 | (1) |
|
13 Representation of Stochastic Microstructures |
|
|
223 | (18) |
|
|
|
223 | (1) |
|
13.2 Interpreting Microstructure as a Stochastic Process |
|
|
224 | (4) |
|
13.2.1 Brief Review of the Terminology and Notation of Stochastic Processes |
|
|
224 | (1) |
|
13.2.2 The Microstructure Process |
|
|
225 | (1) |
|
13.2.3 Statistics of the Microstructure Function |
|
|
226 | (2) |
|
13.3 Microstructure Descriptors |
|
|
228 | (6) |
|
13.3.1 Metrics from the Two-Point Correlations and Characteristic Length Scales |
|
|
228 | (2) |
|
13.3.2 Other Microstructure Descriptors |
|
|
230 | (1) |
|
13.3.2.1 Surface Correlation Function |
|
|
230 | (1) |
|
13.3.2.2 Chord Length Distributions and Lineal Path Functions |
|
|
230 | (1) |
|
13.3.2.3 Topological Invariants |
|
|
231 | (3) |
|
13.4 Reduced Order Descriptions and Relational Statistics |
|
|
234 | (5) |
|
|
239 | (2) |
|
14 Computer Vision for Microstructure Representation |
|
|
241 | (18) |
|
|
|
|
241 | (2) |
|
14.2 A Brief Tour of Computer Vision |
|
|
243 | (9) |
|
|
243 | (2) |
|
14.2.2 Midlevel: Local Features |
|
|
245 | (1) |
|
14.2.2.1 Feature Localization Techniques |
|
|
246 | (1) |
|
14.2.2.2 Alternate Pattern Descriptors |
|
|
247 | (1) |
|
14.2.2.3 Alternate Image Encoding Methods |
|
|
248 | (1) |
|
|
249 | (3) |
|
14.3 Materials Applications |
|
|
252 | (3) |
|
14.3.1 Microstructure Characterization |
|
|
252 | (1) |
|
14.3.1.1 GLCM and Wavelet Features |
|
|
252 | (1) |
|
14.3.1.2 EM/MPM Texture-Based Segmentation |
|
|
253 | (1) |
|
14.3.1.3 Characterizing Two-Phase Microstructures |
|
|
253 | (1) |
|
14.3.1.4 Midlevel Features |
|
|
253 | (2) |
|
|
255 | (1) |
|
14.3.3 Microstructure Generation |
|
|
255 | (1) |
|
14.4 Outlook and Call for Standardization |
|
|
255 | (1) |
|
|
256 | (3) |
|
15 Topological Analysis of Local Structure |
|
|
259 | (16) |
|
|
|
|
259 | (4) |
|
15.1.1 Local Structure in Atomic Systems |
|
|
259 | (1) |
|
15.1.2 Conventional Characterization Approaches |
|
|
260 | (1) |
|
|
261 | (2) |
|
15.2 Voronoi Topology Structure Analysis |
|
|
263 | (6) |
|
|
263 | (1) |
|
|
264 | (1) |
|
15.2.3 Recording Voronoi Topology |
|
|
265 | (1) |
|
15.2.4 Topological Instability and Families of Topologies |
|
|
266 | (1) |
|
15.2.5 Determination of Families of Topologies |
|
|
267 | (1) |
|
15.2.6 Ambiguous Topologies and Their Disambiguation |
|
|
268 | (1) |
|
|
269 | (1) |
|
|
269 | (4) |
|
15.3.1 Defect Identification in High-Temperature Crystals |
|
|
270 | (1) |
|
|
271 | (2) |
|
15.3.3 Grain Boundary Characterization |
|
|
273 | (1) |
|
15.4 Automation through Software |
|
|
273 | (2) |
|
16 Markov Random Fields for Microstructure Simulation |
|
|
275 | (16) |
|
|
|
275 | (1) |
|
16.2 Microstructures as Random Fields |
|
|
276 | (6) |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
280 | (2) |
|
|
282 | (7) |
|
16.3.1 Example 1: 2D Synthesis of an Aluminum Alloy AA3002 Representing the Rolling Plane |
|
|
282 | (2) |
|
16.3.2 3D Reconstruction: A Polycrystal and a Lamellar Composite |
|
|
284 | (1) |
|
16.3.3 3D Reconstruction of a Two-Phase Composite |
|
|
284 | (2) |
|
16.3.4 Spatio-Temporal Sampling (2D + time) of Grain Growth |
|
|
286 | (2) |
|
16.3.5 Microstructure Embedding in CAD Models |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
17 Distance Measures for Microstructures |
|
|
291 | (14) |
|
|
|
291 | (1) |
|
17.2 Moment Invariants and the Shape Quotient |
|
|
292 | (1) |
|
|
293 | (3) |
|
17.3.1 Hellinger Distance |
|
|
294 | (1) |
|
17.3.2 Histogram Intersection Distance |
|
|
295 | (1) |
|
|
295 | (1) |
|
17.3.4 Jeffrey Divergence |
|
|
295 | (1) |
|
17.3.5 Kolmogorov-Smirnov Distance |
|
|
295 | (1) |
|
17.3.6 Earth Mover's Distance |
|
|
295 | (1) |
|
17.3.7 Quadratic-Form Distance |
|
|
296 | (1) |
|
17.4 IN100 Experimental and Synthetic Microstructures |
|
|
296 | (8) |
|
|
297 | (1) |
|
|
298 | (1) |
|
17.4.2.1 Moment Invariant n3 |
|
|
298 | (1) |
|
|
301 | (1) |
|
17.4.2.3 Volume and Morphology |
|
|
301 | (1) |
|
17.4.3 Developing a Criterion for Microstructure Comparison |
|
|
302 | (2) |
|
|
304 | (1) |
|
18 Industrial Applications |
|
|
305 | (14) |
|
|
|
|
|
305 | (1) |
|
18.2 Microstructural Characterization |
|
|
305 | (2) |
|
18.3 Microstructural Characterization Examples |
|
|
307 | (5) |
|
18.4 Future State in Microstructural Characterization |
|
|
312 | (6) |
|
|
318 | (1) |
VI Anomalies |
|
319 | (38) |
|
|
323 | (16) |
|
|
|
323 | (4) |
|
19.1.1 Anomaly Testing as Triage |
|
|
323 | (1) |
|
19.1.2 Anomalies Drawn from a Uniform Distribution |
|
|
324 | (1) |
|
19.1.2.1 Nonuniform Distributions of Anomalousness |
|
|
325 | (1) |
|
19.1.3 Anomalies as Pixels in Spectral Imagery |
|
|
325 | (1) |
|
19.1.3.1 Global and Local Anomaly Detectors |
|
|
326 | (1) |
|
19.1.3.2 Regression Framework |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
331 | (3) |
|
19.5.1 Kernel Density Estimation |
|
|
331 | (1) |
|
19.5.2 Feature Space Interpretation: The "Kernel Trick" |
|
|
331 | (3) |
|
|
334 | (3) |
|
19.6.1 Subtraction-Based Approaches to Anomalous Change Detection |
|
|
334 | (2) |
|
19.6.2 Distribution-Based Approaches to Anomalous Change Detection |
|
|
336 | (1) |
|
19.6.3 Further Comments on Anomalous Change Detection |
|
|
337 | (1) |
|
|
337 | (2) |
|
20 Anomalies in Microstructures |
|
|
339 | (18) |
|
|
|
|
|
|
339 | (1) |
|
20.2 Features of the Local Fiber Microstructure |
|
|
339 | (11) |
|
|
341 | (1) |
|
20.2.1.1 Description of the Orientation Field |
|
|
341 | (1) |
|
20.2.1.2 Computational Simplification of the Orientation Field |
|
|
343 | (1) |
|
20.2.1.3 Color Visualization of the Orientation |
|
|
344 | (1) |
|
20.2.2 Orientation Gradient Field |
|
|
345 | (1) |
|
20.2.2.1 Geometric Simplifications of the Orientation Gradient |
|
|
346 | (1) |
|
20.2.2.2 Color Visualization of the Orientation Gradient |
|
|
347 | (1) |
|
20.2.3 Estimation of the Orientation Gradient Field |
|
|
348 | (2) |
|
|
350 | (4) |
|
20.3.1 Gaussian Mixture Modeling |
|
|
350 | (1) |
|
20.3.2 Anomalies of the Microstructure |
|
|
351 | (3) |
|
|
354 | (3) |
VII Sparse Methods |
|
357 | (82) |
|
21 Denoising Methods with Applications to Microscopy |
|
|
361 | (26) |
|
|
|
361 | (2) |
|
21.1.1 Organization of Chapter |
|
|
363 | (1) |
|
21.2 Image and Noise Models |
|
|
363 | (4) |
|
|
363 | (1) |
|
21.2.2 Gaussian Noise Model |
|
|
363 | (1) |
|
21.2.3 Poisson Noise Model |
|
|
364 | (2) |
|
|
366 | (1) |
|
21.3 Maximum Likelihood Estimation |
|
|
367 | (5) |
|
21.3.1 Tikhonov Regularization |
|
|
367 | (2) |
|
21.3.2 Sparsity and Wavelet Denoising |
|
|
369 | (1) |
|
|
370 | (2) |
|
21.4 Kernel Denoising Methods |
|
|
372 | (5) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
374 | (1) |
|
21.4.4 Nonlocal Means (NLM) |
|
|
375 | (2) |
|
|
377 | (5) |
|
21.5.1 Principal Components Analysis |
|
|
378 | (1) |
|
|
379 | (2) |
|
|
381 | (1) |
|
|
382 | (2) |
|
21.6.1 Comparison of Linear Gaussian Smoothing, Bilateral Filtering, and Nonlocal Means |
|
|
382 | (1) |
|
21.6.2 Examples of Poisson Image Denoising on Simulated Data |
|
|
382 | (1) |
|
21.6.3 Application to Electron Microscopy Spectrum Images |
|
|
382 | (2) |
|
|
384 | (1) |
|
|
385 | (2) |
|
22 Compressed Sensing for Imaging Applications |
|
|
387 | (20) |
|
|
|
387 | (7) |
|
22.1.1 An Imaging Experiment |
|
|
387 | (3) |
|
22.1.2 Mathematical Formulation |
|
|
390 | (1) |
|
22.1.2.1 Linear Measurements |
|
|
390 | (1) |
|
22.1.2.2 Bases for Discretization and Sparsity |
|
|
391 | (1) |
|
22.1.2.3 The Linear Acquisition Model |
|
|
392 | (1) |
|
22.1.3 Classical Least Squares Recovery |
|
|
393 | (1) |
|
22.2 Principles of Sparse Recovery |
|
|
394 | (4) |
|
|
395 | (3) |
|
22.3 Algorithms for Sparse Recovery |
|
|
398 | (5) |
|
22.3.1 Orthogonal Matching Pursuit |
|
|
398 | (1) |
|
22.3.2 Iterative Hard Thresholding |
|
|
399 | (2) |
|
22.3.3 Sparse Recovery Using ti Minimization |
|
|
401 | (2) |
|
22.3.4 Beyond Sparsity: Recovery Algorithms for Alternative Structure |
|
|
403 | (1) |
|
22.4 Numerical Example: Computed Tomography |
|
|
403 | (2) |
|
|
405 | (2) |
|
23 Dictionary Methods for Compressed Sensing |
|
|
407 | (12) |
|
|
|
|
407 | (3) |
|
23.1.1 Synthesis Model and Sparsity Measures |
|
|
407 | (1) |
|
23.1.2 Synthesis Sparse Coding |
|
|
408 | (1) |
|
23.1.3 Dictionary Learning |
|
|
408 | (1) |
|
23.1.4 Why Are There Many Dictionary Learning Algorithms? |
|
|
408 | (1) |
|
23.1.5 Compressed Sensing |
|
|
409 | (1) |
|
23.1.6 Compressed Sensing with Adaptive Dictionaries |
|
|
409 | (1) |
|
|
410 | (1) |
|
23.2 BCS Problem Formulations |
|
|
410 | (1) |
|
|
411 | (4) |
|
23.3.1 Dictionary Learning Step for (P0) |
|
|
411 | (1) |
|
23.3.1.1 Sparse Coding Step |
|
|
411 | (1) |
|
23.3.1.2 Dictionary Atom Update Step |
|
|
412 | (1) |
|
23.3.2 Dictionary Learning Step for (P1) |
|
|
412 | (1) |
|
|
413 | (1) |
|
23.3.4 Overall Algorithms |
|
|
413 | (2) |
|
23.4 Numerical Experiments |
|
|
415 | (2) |
|
23.4.1 Framework for Electron Microscopy |
|
|
415 | (1) |
|
23.4.2 Results and Discussion |
|
|
415 | (2) |
|
|
417 | (2) |
|
24 Sparse Sampling in Microscopy |
|
|
419 | (20) |
|
|
|
|
24.1 Motivations for Sparse Sampling in Electron Microscopy |
|
|
420 | (1) |
|
24.2 Sparse Sampling and Reconstruction |
|
|
420 | (1) |
|
24.3 Sparse Sampling in Transmission Electron Microscopy |
|
|
421 | (2) |
|
24.4 Sparse Sampling in Scanning Surface Microscopy |
|
|
423 | (1) |
|
24.5 Sparse Sampling in Atomic Force Microscopy |
|
|
424 | (1) |
|
24.6 Sparse Sampling in Scanning Electron Microscopy |
|
|
424 | (1) |
|
24.7 Compressed Sensing in Multi-Beam Electron Microscopes |
|
|
424 | (2) |
|
24.8 Theoretical Analysis for a Multi-Beam CSEM |
|
|
426 | (1) |
|
24.9 Potential Embodiments of a Multi-Beam CSEM |
|
|
427 | (5) |
|
24.9.1 Concept for Steerable Beams |
|
|
428 | (1) |
|
24.9.2 Array of Correlated Steerable Beams |
|
|
429 | (1) |
|
24.9.3 Array of Individually Steerable Beams |
|
|
429 | (2) |
|
24.9.4 Managing the Electron Budget |
|
|
431 | (1) |
|
24.10 Multi-Beam CSEM Speed Estimates |
|
|
432 | (2) |
|
24.11 Scientific Challenges in a Multi-Beam CSEM |
|
|
434 | (2) |
|
24.12 Engineering Challenges in a Multi-Beam CSEM |
|
|
436 | (2) |
|
|
438 | (1) |
Appendix |
|
439 | (6) |
|
A List of Symbols for Chapters 6, 7, and 13 |
|
|
440 | (5) |
Bibliography |
|
445 | (56) |
Index |
|
501 | |