|
|
1 | (6) |
|
1.1 Thesis Outline and Contributions |
|
|
3 | (4) |
|
|
4 | (3) |
|
|
7 | (20) |
|
2.1 Components of a Spoken Dialogue System |
|
|
7 | (5) |
|
|
7 | (1) |
|
2.1.2 Spoken Language Understanding |
|
|
8 | (2) |
|
|
10 | (1) |
|
2.1.4 Response Generation |
|
|
11 | (1) |
|
2.1.5 Extensions to the Dialogue Cycle |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (14) |
|
2.3.1 Hand-Crafted Dialogue Management |
|
|
13 | (2) |
|
2.3.2 Partial Observability |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.3.4 Partially Observable Markov Decision Processes |
|
|
17 | (5) |
|
|
22 | (5) |
|
|
27 | (18) |
|
|
28 | (1) |
|
3.2 Bayesian Networks for Dialogue State |
|
|
29 | (4) |
|
|
30 | (1) |
|
|
31 | (1) |
|
3.2.3 Sub-Components for the User Act Nodes |
|
|
31 | (1) |
|
|
32 | (1) |
|
3.3 TOWNINFO States: An Example |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (5) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
3.5.4 The Belief Propagation Algorithm |
|
|
39 | (1) |
|
3.6 Comparison to Previous Work |
|
|
40 | (1) |
|
3.7 The Loss of the Markov Property |
|
|
41 | (1) |
|
3.8 Limiting the Time-Slices |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
43 | (2) |
|
4 Maintaining State: Optimisations |
|
|
45 | (12) |
|
4.1 Expectation Propagation |
|
|
45 | (1) |
|
4.2 k-Best Belief Propagation |
|
|
46 | (5) |
|
|
46 | (1) |
|
4.2.2 The New Update Equation |
|
|
47 | (1) |
|
4.2.3 Reducing Complexity |
|
|
48 | (2) |
|
4.2.4 Choosing the k-Best |
|
|
50 | (1) |
|
|
50 | (1) |
|
4.3 Grouped Belief Propagation |
|
|
51 | (1) |
|
4.4 Mostly Constant Factors |
|
|
51 | (2) |
|
4.5 Experimental Comparison of Inference Algorithms |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
55 | (2) |
|
|
57 | (14) |
|
5.1 Policy Learning Theory |
|
|
57 | (1) |
|
|
58 | (1) |
|
5.3 TOWNINFO Summary Acts: An Example |
|
|
59 | (2) |
|
5.4 Function Approximations for Dialogue Management |
|
|
61 | (1) |
|
5.5 TOWNINFO Function Approximations: An Example |
|
|
62 | (2) |
|
5.5.1 Grid-Based Features with No Parameter Tying |
|
|
62 | (1) |
|
5.5.2 Grid-Based Features with Parameter Tying |
|
|
63 | (1) |
|
|
64 | (3) |
|
|
66 | (1) |
|
|
67 | (1) |
|
5.8 TOWNINFO Learning: An Example |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
69 | (2) |
|
|
71 | (12) |
|
|
71 | (5) |
|
6.1.1 Hand-Crafted State Transitions |
|
|
72 | (2) |
|
6.1.2 Partially Observable State Transitions |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
76 | (2) |
|
6.4 Evaluating the Effects of Semantic Errors |
|
|
78 | (3) |
|
|
81 | (2) |
|
|
81 | (2) |
|
|
83 | (20) |
|
7.1 An Extended TOWNINFO System |
|
|
84 | (3) |
|
7.1.1 Extended TOWNINFO Dialogue State |
|
|
84 | (1) |
|
7.1.2 Extended TOWNINFO Summary Acts |
|
|
84 | (2) |
|
7.1.3 Extended TOWNINFO Summary Features |
|
|
86 | (1) |
|
7.2 Specialised User Act Factors |
|
|
87 | (2) |
|
7.3 Learning Dirichlet Distributions |
|
|
89 | (6) |
|
7.3.1 The Approximation and Target Functions |
|
|
90 | (3) |
|
7.3.2 Matching the Target Function |
|
|
93 | (1) |
|
|
94 | (1) |
|
7.4 Tied Dirichlet Distributions |
|
|
95 | (3) |
|
7.5 Parameter Learning for Re-Scoring Semantics |
|
|
98 | (2) |
|
7.5.1 Simulated Evaluation on TOWNINFO |
|
|
98 | (1) |
|
7.5.2 User Data Evaluation on TOWNINFO |
|
|
99 | (1) |
|
7.6 Parameter Learning for Improving the Dialogue Manager |
|
|
100 | (1) |
|
|
101 | (2) |
|
|
102 | (1) |
|
|
103 | (2) |
Appendix A Dialogue Acts Formats |
|
105 | (2) |
Appendix B Proof of Grouped Loopy Belief Propagation |
|
107 | (4) |
Appendix C Experimental Model for Testing Belief Updating Optimisations |
|
111 | (2) |
Appendix D The Simulated Confidence Scorer |
|
113 | (2) |
Appendix E Matching the Dirichlet Distribution |
|
115 | (4) |
Appendix F Confidence Score Quality |
|
119 | (14) |
Author Biography |
|
133 | (2) |
Index |
|
135 | |