Preface |
|
iii | |
Acknowledgements |
|
vii | |
|
|
|
|
2 | (44) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.2 Samples and Variables |
|
|
3 | (3) |
|
|
6 | (1) |
|
1.4 Initial Data Analysis |
|
|
7 | (6) |
|
|
7 | (1) |
|
1.4.2 Stripcharts, Stem-and-leaf Displays, and Histograms |
|
|
8 | (5) |
|
1.5 Mode, Median. Mean, Variance, and Standard Deviation |
|
|
13 | (8) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.5.4 A Visual Comparison of Mean, Median, and Mode |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.5.6 Quartile and Interquartile Range |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.5.8 The Standard Deviation |
|
|
19 | (1) |
|
|
19 | (2) |
|
|
21 | (2) |
|
1.6.1 Box and Whiskers Plot |
|
|
21 | (2) |
|
1.7 Error Propagation and Uncertainty |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
1.12 One-way Analysis of Variance ANOVA |
|
|
31 | (1) |
|
1.13 Two-way Analysis of Variance ANOVA |
|
|
32 | (3) |
|
1.13.1 Two way ANOVA with Interaction |
|
|
32 | (3) |
|
1.14 Type I, II, and III Errors |
|
|
35 | (1) |
|
|
36 | (1) |
|
1.15.1 Two-sample Problems: Comparing Means or Median? |
|
|
36 | (1) |
|
1.16 An Example of Non-normal Distribution |
|
|
37 | (2) |
|
1.17 About Visual Representation of Data |
|
|
39 | (1) |
|
|
39 | (4) |
|
1.18.1 Additional Data-set and Exercises |
|
|
40 | (1) |
|
|
41 | (1) |
|
1.18.3 Suggested Essential Literature |
|
|
41 | (2) |
|
|
43 | (3) |
|
PART II ESSENTIAL MULTIVARIATE STATISTICS |
|
|
|
|
46 | (37) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (1) |
|
2.4 One Variable at a Time Design |
|
|
49 | (1) |
|
|
50 | (2) |
|
2.6 Regression Model Representations |
|
|
52 | (7) |
|
2.6.1 Factorial Model Including Three Replicates in the Center |
|
|
53 | (4) |
|
2.6.2 Model with More than Two Levels for each Factor |
|
|
57 | (2) |
|
2.7 Data-set EMAGMA, An Example of DoE with Three Factors |
|
|
59 | (9) |
|
2.7.1 Workflow using OVAT |
|
|
60 | (1) |
|
2.7.2 Factorial Design 2s |
|
|
61 | (5) |
|
2.7.3 Factorial Design 2K |
|
|
66 | (1) |
|
2.7.4 Fractional Factorial Design 2k-1 |
|
|
66 | (1) |
|
2.7.5 On Graphical Representation of Factorials with Four Factors |
|
|
67 | (1) |
|
|
68 | (3) |
|
|
69 | (2) |
|
2.9 Design of Experiments Matrix vs Real Experiments Performed |
|
|
71 | (5) |
|
2.9.1 Mixture Design in Constrained Region |
|
|
71 | (1) |
|
|
71 | (5) |
|
|
76 | (1) |
|
|
77 | (4) |
|
|
78 | (1) |
|
|
79 | (1) |
|
2.11.3 Suggested Essential Literature |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (46) |
|
|
83 | (1) |
|
|
84 | (4) |
|
|
87 | (1) |
|
3.3 Principal Component Analysis |
|
|
88 | (39) |
|
3.3.1 Centering and Scaling |
|
|
90 | (1) |
|
|
91 | (1) |
|
3.3.3 Data-set ELE: Example of PCA Applied to a Data-set Obtained Via Electrophoresis Characterization |
|
|
92 | (5) |
|
3.3.4 Data-set ASPHALT: An Application of PCA to ATR-FTIR Spectroscopy |
|
|
97 | (7) |
|
3.3.5 Data-set PCAMIX: PCA Applied to Binary Chemical Mixtures at Trace Levels |
|
|
104 | (4) |
|
|
108 | (4) |
|
|
112 | (1) |
|
|
113 | (3) |
|
3.3.9 Discriminant Analysis |
|
|
116 | (1) |
|
3.3.10 Soft Independent Modelling of Class Analogy |
|
|
117 | (6) |
|
3.3.11 Artificial Neural Networks |
|
|
123 | (1) |
|
3.3.12 Other Methodologies |
|
|
124 | (1) |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
126 | (1) |
|
3.3.16 Suggested Essential Literature |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (23) |
|
|
129 | (1) |
|
4.2 Univariate Calibration |
|
|
129 | (2) |
|
4.3 Univariate Calibration, Data-set Concrete |
|
|
131 | (7) |
|
|
132 | (6) |
|
4.4 Multivariate Calibration |
|
|
138 | (8) |
|
4.4.1 Principal Component Regression |
|
|
138 | (1) |
|
4.4.2 An Example of Multivariate Regression using the Gasoline Data Set |
|
|
139 | (3) |
|
4.4.3 Partial Least Squares |
|
|
142 | (4) |
|
4.5 Other Regression Methodologies |
|
|
146 | (5) |
|
|
146 | (3) |
|
4.5.2 A Short History of Partial Least Squares |
|
|
149 | (1) |
|
|
149 | (1) |
|
4.5.4 Essential References |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (47) |
|
5.1 Fast Fabrication of ZnO Superhydrophobic Surfaces without Chemical Post-treatment: Investigation of Important Parameters using Taguchi Mixed Level Design L8 (41 23) |
|
|
153 | (1) |
|
|
153 | (1) |
|
5.3 Materials and Methods |
|
|
154 | (2) |
|
|
154 | (1) |
|
5.3.2 Design of Experiments (DOE) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
5.5 Results and Discussion |
|
|
156 | (8) |
|
|
156 | (3) |
|
|
159 | (1) |
|
|
160 | (2) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
165 | (4) |
|
5.7 An Example of Evolutionary Design of Experiment: Prediction of the Aging of Polymers |
|
|
169 | (1) |
|
|
169 | (5) |
|
5.8.1 Evolutionary Design of Experiment for Accelerated Aging Tests |
|
|
171 | (3) |
|
5.9 Prediction of Rubber Aging by Accelerated Aging Tests |
|
|
174 | (4) |
|
5.9.1 Successive Bayesian Estimation |
|
|
177 | (1) |
|
5.10 Results and Discussion |
|
|
178 | (4) |
|
|
182 | (2) |
|
|
184 | (1) |
|
5.12 Principal Component Analysis Applied to the Study of the Behavior of Steel Corrosion Inhibitors |
|
|
185 | (1) |
|
|
185 | (1) |
|
5.14 Materials and Methods |
|
|
186 | (1) |
|
5.14.1 Samples Preparation |
|
|
186 | (1) |
|
5.14.2 Chemical Speciation Equilibrium of Inhibitors |
|
|
186 | (1) |
|
5.15 Electrode Preparation |
|
|
187 | (1) |
|
5.16 Electrochemical Techniques |
|
|
188 | (1) |
|
5.16.1 Zero Current Potential and Potentiodynamic Polarisation Measurement |
|
|
189 | (1) |
|
|
189 | (1) |
|
5.18 Data Management Multivariate Analysis |
|
|
189 | (1) |
|
5.19 Results and Discussion |
|
|
189 | (3) |
|
5.19.1 Open Circuit Potential (OCP) and Tafel Polarization Measurement |
|
|
189 | (3) |
|
5.20 Multivariate Analysis |
|
|
192 | (4) |
|
5.20.1 Principal Component Analysis |
|
|
192 | (1) |
|
5.20.2 Calibration-validation Test |
|
|
192 | (1) |
|
5.20.3 Cyclic Voltammetry Study |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
|
|
199 | (2) |
|
|
199 | (2) |
|
|
201 | (52) |
|
|
202 | (10) |
|
|
212 | (12) |
|
|
224 | (13) |
|
|
237 | (14) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
B A Short Refresher of Matrix Algebra |
|
|
253 | (6) |
|
|
259 | (7) |
|
D Design of Experiment Tables |
|
|
266 | (7) |
|
|
266 | (5) |
|
|
271 | (2) |
Index |
|
273 | |