Muutke küpsiste eelistusi

E-raamat: Statistical Physics of Data Assimilation and Machine Learning

(University of California, San Diego)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Feb-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009021708
  • Formaat - PDF+DRM
  • Hind: 71,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Feb-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009021708

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics"--

Muu info

The theory of data assimilation and machine learning is introduced in an accessible manner for undergraduate and graduate students.
Preface ix
1 A Data Assimilation Reminder
1(4)
1.1 Recalling the Basic Idea of Statistical Data Assimilation
1(3)
1.2 What Is in the Following
Chapters?
4(1)
2 Remembrance of Things Path
5(9)
2.1 Recursion Relation along the Path X
6(2)
2.2 The `Action' A(X) = --log[ P(X|Y)]
8(1)
2.3 Multiple Measurement Windows in Time
9(1)
2.4 The Standard Model for SDA
9(2)
2.5 The Standard Model Action for the Hodgkin-Huxley NaKL Model
11(2)
2.6 Twin Experiments
13(1)
3 SDA Variational Principles
14(12)
3.1 Estimating Expected Value Integrals
14(1)
3.2 Laplace's Method for Estimating Expected Value Integrals
15(3)
3.3 The Euler-Lagrange Equations for the Standard Model: Continuous Time
18(8)
4 Using Waveform Information
26(21)
4.1 Inconsistency in the Standard Model Action
26(1)
4.2 Time Delay State Vectors and Data
27(3)
4.3 "Old Nudging" for Proxy Vectors
30(1)
4.4 L = 1; x1(t) Is Observed
31(2)
4.5 Regularizing the Local Inverse of ∂S/∂x
33(1)
4.6 Computing the Pseudoinverse with Singular Value Decomposition
33(1)
4.7 Lorenz96 Model
34(1)
4.8 Synchronization Errors in Time
35(5)
4.9 Rossler Hyperchaos
40(4)
4.10 The Euler-Lagrange Equations for Measurement Terms in Proxy Vectors
44(1)
4.11 Simplified Use of Waveforms
45(2)
5 Annealing in the Model Precision Rf
47(19)
5.1 Varying the Hyperparameter Rf
49(4)
5.2 Lorenz96 Model with D = 5
53(5)
5.3 Hodgkin-Huxley NaKL Neuron
58(5)
5.4 Qualitative Commentary about Precision Annealing
63(3)
6 Discrete Time Integration in Data Assimilation Variational Principles: Lagrangian and Hamiltonian Formulations
66(29)
6.1 Symplecticity in Variational Data Assimilation
69(8)
6.2 A Symplectic Annealing Method
77(2)
6.3 Three Integration Methods
79(2)
6.4 Numerical Twin Experiments
81(11)
6.5 Summary of Symplectic Annealing Methods
92(3)
7 Monte Carlo Methods
95(24)
7.1 Metropolis-Hastings -- Random Proposals
98(2)
7.2 Precision Annealing MHR Sampling
100(4)
7.3 Hamiltonian Monte Carlo Methods -- Structured Proposals
104(4)
7.4 Underappreciating HMC
108(1)
7.5 Using PAHMC on Two Model Dynamics
108(1)
7.6 HH NaKL Model
108(3)
7.7 Lorenz96 Model; D = 20
111(2)
7.8 Computational Considerations for PAHMR and PAHMC Procedures
113(6)
8 Machine Learning and Its Equivalence to Statistical Data Assimilation
119(21)
8.1 (A(X)) = (-- log P(X|Y)); Action Is Information
119(1)
8.2 General Discussion of ML
120(3)
8.3 Using ML to Predict Subsequent Terms in a Time Series {s(n)}
123(3)
8.4 Action Levels for the Given Time Series {s(n)}
126(1)
8.5 Errors in Training and Validation
126(5)
8.6 "Twin Experiment" with a Multi-layer Perceptron
131(6)
8.7 Continuous Layers: Deepest Learning
137(1)
8.8 Comments on a Set of Curated Retinal Images
138(2)
9 Two Examples of the Practical Use of Data Assimilation
140(32)
9.1 Data Assimilation in Action
140(1)
9.2 Experimental Data on Neurons in the Avian Brain
141(8)
9.3 Shallow Water Equations; Lagrangian Drifters
149(6)
9.4 Time-Delayed Nudging Used in the Shallow Water Equations
155(4)
9.5 Twin Experiments
159(1)
9.6 Nonlinear Shallow Water Equations
160(1)
9.7 Results with Time Delay Nudging for the Shallow Water Equations
161(10)
9.8 Summing It Up
171(1)
10 Unfinished Business
172(2)
Bibliography 174(9)
Index 183
Henry D. I. Abarbanel has worked in several fields of physics including high energy physics, nonlinear dynamics, and data assimilation in neurobiology. He is the author of two previous books: Analysis of Observed Chaotic Data (1996) and Predicting the Future: Completing Models of Observed Complex Systems (2013). He is a Distinguished Professor of Physics at University of California, San Diego (UCSD) and a Distinguished Research Physicist at UCSD's Scripps Institution of Oceanography.