Muutke küpsiste eelistusi

E-raamat: Statistical Physics: Volume 1 of Modern Classical Physics

  • Formaat: 408 pages
  • Ilmumisaeg: 25-May-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691215556
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 408 pages
  • Ilmumisaeg: 25-May-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691215556
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A groundbreaking textbook on twenty-first-century statistical physics and its applications

Kip Thorne and Roger Blandfords monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject.

Statistical Physics is an essential introduction that is different from others on the subject because of its unique approach, which is coordinate-independent and geometric; embraces and elucidates the close quantum-classical connection and the relativistic and Newtonian domains; and demonstrates the power of statistical techniquesparticularly statistical mechanicsby presenting applications not only to the usual kinds of things, such as gases, liquids, solids, and magnetic materials, but also to a much wider range of phenomena, including black holes, the universe, information and communication, and signal processing amid noise.







Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional Track 2 sections make this an ideal book for a one-quarter, half-semester, or full-semester course An online illustration package is available to professors

The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.

Arvustused

"Kip S. Thorne, Co-Winner of the 2017 Nobel Prize in Physics" "Roger D. Blandford, Co-Winner of the 2016 Crafoord Prize in Astronomy and Winner of the 2020 Shaw Prize in Astronomy"

List of Boxes
xiii
Preface xv
Contents of Modern Classical Physics, volumes 1--5 xxi
PART I FOUNDATIONS
1(90)
1 Newtonian Physics: Geometric Viewpoint
5(32)
1.1 Introduction
5(3)
1.1.1 The Geometric Viewpoint on the Laws of Physics
5(2)
1.1.2 Purposes of This
Chapter
7(1)
1.1.3 Overview of This
Chapter
7(1)
1.2 Foundational Concepts
8(2)
1.3 Tensor Algebra without a Coordinate System
10(3)
1.4 Particle Kinetics and Lorentz Force in Geometric Language
13(3)
1.5 Component Representation of Tensor Algebra
16(4)
1.5.1 Slot-Naming Index Notation
17(2)
1.5.2 Particle Kinetics in Index Notation
19(1)
1.6 Orthogonal Transformations of Bases
20(2)
1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl
22(4)
1.8 Volumes, Integration, and Integral Conservation Laws
26(3)
1.8.1 Gauss's and Stokes' Theorems
27(2)
1.9 The Stress Tensor and Momentum Conservation
29(4)
1.9.1 Examples: Electromagnetic Field and Perfect Fluid
30(1)
1.9.2 Conservation of Momentum
31(2)
1.10 Geometrized Units and Relativistic Particles for Newtonian Readers
33(4)
1.10.1 Geometrized Units
33(1)
1.10.2 Energy and Momentum of a Moving Particle
34(1)
Bibliographic Note
35(2)
2 Special Relativity: Geometric Viewpoint
37(54)
2.1 Overview
37(1)
2.2 Foundational Concepts
38(10)
2.2.1 Inertial Frames, Inertial Coordinates, Events, Vectors, and Spacetime Diagrams
38(4)
2.2.2 The Principle of Relativity and Constancy of Light Speed
42(3)
2.2.3 The Interval and Its Invariance
45(3)
2.3 Tensor Algebra without a Coordinate System
48(1)
2.4 Particle Kinetics and Lorentz Force without a Reference Frame
49(5)
2.4.1 Relativistic Particle Kinetics: World Lines, 4-Velocity, 4-Momentum and Its Conservation, 4-Force
49(3)
2.4.2 Geometric Derivation of the Lorentz Force Law
52(2)
2.5 Component Representation of Tensor Algebra
54(3)
2.5.1 Lorentz Coordinates
54(1)
2.5.2 Index Gymnastics
54(2)
2.5.3 Slot-Naming Notation
56(1)
2.6 Particle Kinetics in Index Notation and in a Lorentz Frame
57(6)
2.7 Lorentz Transformations
63(2)
2.8 Spacetime Diagrams for Boosts
65(2)
2.9 Time Travel
67(3)
2.9.1 Measurement of Time; Twins Paradox
67(1)
2.9.2 Wormholes
68(1)
2.9.3 Wormhole as Time Machine
69(1)
2.10 Directional Derivatives, Gradients, and the Levi-Civita Tensor
70(1)
2.11 Nature of Electric and Magnetic Fields; Maxwell's Equations
71(4)
2.12 Volumes, Integration, and Conservation Laws
75(7)
2.12.1 Spacetime Volumes and Integration
75(3)
2.12.2 Conservation of Charge in Spacetime
78(1)
2.12.3 Conservation of Particles, Baryon Number, and Rest Mass
79(3)
2.13 Stress-Energy Tensor and Conservation of 4-Momentum
82(9)
2.13.1 Stress-Energy Tensor
82(2)
2.13.2 4-Momentum Conservation
84(1)
2.13.3 Stress-Energy Tensors for Perfect Fluids and Electromagnetic Fields
85(3)
Bibliographic Note
88(3)
PART II STATISTICAL PHYSICS
91(256)
3 Kinetic Theory
95(60)
3.1 Overview
95(2)
3.2 Phase Space and Distribution Function
97(14)
3.2.1 Newtonian Number Density in Phase Space, N
97(2)
3.2.2 Relativistic Number Density in Phase Space, N
99(6)
3.2.3 Distribution Function f(x, v, t) for Particles in a Plasma
105(1)
3.2.4 Distribution Function Iv/v3 for Photons
106(2)
3.2.5 Mean Occupation Number η
108(3)
3.3 Thermal-Equilibrium Distribution Functions
111(6)
3.4 Macroscopic Properties of Matter as Integrals over Momentum Space
117(3)
3.4.1 Particle Density n, Flux S, and Stress Tensor T
117(1)
3.4.2 Relativistic Number-Flux 4-Vector 5 and Stress-Energy Tensor T
118(2)
3.5 Isotropic Distribution Functions and Equations of State
120(12)
3.5.1 Newtonian Density, Pressure, Energy Density, and Equation of State
120(2)
3.5.2 Equations of State for a Nonrelativistic Hydrogen Gas
122(3)
3.5.3 Relativistic Density, Pressure, Energy Density, and Equation of State
125(1)
3.5.4 Equation of State for a Relativistic Degenerate Hydrogen Gas
126(2)
3.5.5 Equation of State for Radiation
128(4)
3.6 Evolution of the Distribution Function: Liouville's Theorem, the Collisionless Boltzmann Equation, and the Boltzmann Transport Equation
132(7)
3.7 Transport Coefficients
139(16)
3.7.1 Diffusive Heat Conduction inside a Star
142(1)
3.7.2 Order-of-Magnitude Analysis
143(1)
3.7.3 Analysis Using the Boltzmann Transport Equation
144(9)
Bibliographic Note
153(2)
4 Statistical Mechanics
155(64)
4.1 Overview
155(2)
4.2 Systems, Ensembles, and Distribution Functions
157(9)
4.2.1 Systems
157(3)
4.2.2 Ensembles
160(1)
4.2.3 Distribution Function
161(5)
4.3 Liouville's Theorem and the Evolution of the Distribution Function
166(2)
4.4 Statistical Equilibrium
168(10)
4.4.1 Canonical Ensemble and Distribution
169(3)
4.4.2 General Equilibrium Ensemble and Distribution; Gibbs Ensemble; Grand Canonical Ensemble
172(2)
4.4.3 Fermi-Dirac and Bose-Einstein Distributions
174(3)
4.4.4 Equipartition Theorem for Quadratic, Classical Degrees of Freedom
177(1)
4.5 The Microcanonical Ensemble
178(2)
4.6 The Ergodic Hypothesis
180(1)
4.7 Entropy and Evolution toward Statistical Equilibrium
181(10)
4.7.1 Entropy and the Second Law of Thermodynamics
181(2)
4.7.2 What Causes the Entropy to Increase?
183(8)
4.8 Entropy per Particle
191(2)
4.9 Bose-Einstein Condensate
193(8)
4.10 Statistical Mechanics in the Presence of Gravity
201(10)
4.10.1 Galaxies
201(3)
4.10.2 Black Holes
204(5)
4.10.3 The Universe
209(1)
4.10.4 Structure Formation in the Expanding Universe: Violent Relaxation and Phase Mixing
210(1)
4.11 Entropy and Information
211(8)
4.11.1 Information Gained When Measuring the State of a System in a Microcanonical Ensemble
211(1)
4.11.2 Information in Communication Theory
212(2)
4.11.3 Examples of Information Content
214(2)
4.11.4 Some Properties of Information
216(1)
4.11.5 Capacity of Communication Channels; Erasing Information from Computer Memories
216(2)
Bibliographic Note
218(1)
5 Statistical Thermodynamics
219(64)
5.1 Overview
219(2)
5.2 Microcanonical Ensemble and the Energy Representation of Thermodynamics
221(8)
5.2.1 Extensive and Intensive Variables; Fundamental Potential
221(1)
5.2.2 Energy as a Fundamental Potential
222(1)
5.2.3 Intensive Variables Identified Using Measuring Devices; First Law of Thermodynamics
223(3)
5.2.4 Euler's Equation and Form of the Fundamental Potential
226(1)
5.2.5 Everything Deducible from First Law; Maxwell Relations
227(1)
5.2.6 Representations of Thermodynamics
228(1)
5.3 Grand Canonical Ensemble and the Grand-Potential Representation of Thermodynamics
229(10)
5.3.1 The Grand-Potential Representation, and Computation of Thermodynamic Properties as a Grand Canonical Sum
229(3)
5.3.2 Nonrelativistic van der Waals Gas
232(7)
5.4 Canonical Ensemble and the Physical-Free-Energy Representation of Thermodynamics
239(7)
5.4.1 Experimental Meaning of Physical Free Energy
241(1)
5.4.2 Ideal Gas with Internal Degrees of Freedom
242(4)
5.5 Gibbs Ensemble and Representation of Thermodynamics; Phase Transitions and Chemical Reactions
246(14)
5.5.1 Out-of-Equilibrium Ensembles and Their Fundamental Thermodynamic Potentials and Minimum Principles
248(3)
5.5.2 Phase Transitions
251(5)
5.5.3 Chemical Reactions
256(4)
5.6 Fluctuations away from Statistical Equilibrium
260(6)
5.7 Van der Waals Gas: Volume Fluctuations and Gas-to-Liquid Phase Transition
266(4)
5.8 Magnetic Materials
270(13)
5.8.1 Paramagnetism; The Curie Law
271(1)
5.8.2 Ferromagnetism: The Ising Model
272(1)
5.8.3 Renormalization Group Methods for the Ising Model
273(6)
5.8.4 Monte Carlo Methods for the Ising Model
279(3)
Bibliographic Note
282(1)
6 Random Processes
283(64)
6.1 Overview
283(2)
6.2 Fundamental Concepts
285(4)
6.2.1 Random Variables and Random Processes
285(1)
6.2.2 Probability Distributions
286(2)
6.2.3 Ergodic Hypothesis
288(1)
6.3 Markov Processes and Gaussian Processes
289(8)
6.3.1 Markov Processes; Random Walk
289(3)
6.3.2 Gaussian Processes and the Central Limit Theorem; Random Walk
292(3)
6.3.3 Doob's Theorem for Gaussian-Markov Processes, and Brownian Motion
295(2)
6.4 Correlation Functions and Spectral Densities
297(9)
6.4.1 Correlation Functions; Proof of Doob's Theorem
297(2)
6.4.2 Spectral Densities
299(2)
6.4.3 Physical Meaning of Spectral Density, Light Spectra, and Noise in a Gravitational Wave Detector
301(2)
6.4.4 The Wiener-Khintchine Theorem; Cosmological Density Fluctuations
303(3)
6.5 2-Dimensional Random Processes
306(2)
6.5.1 Cross Correlation and Correlation Matrix
306(1)
6.5.2 Spectral Densities and the Wiener-Khintchine Theorem
307(1)
6.6 Noise and Its Types of Spectra
308(3)
6.6.1 Shot Noise, Flicker Noise, and Random-Walk Noise; Cesium Atomic Clock
308(2)
6.6.2 Information Missing from Spectral Density
310(1)
6.7 Filtering Random Processes
311(12)
6.7.1 Filters, Their Kernels, and the Filtered Spectral Density
311(2)
6.7.2 Brownian Motion and Random Walks
313(2)
6.7.3 Extracting a Weak Signal from Noise: Band-Pass Filter, Wiener's Optimal Filter, Signal-to-Noise Ratio, and Allan Variance of Clock Noise
315(6)
6.7.4 Shot Noise
321(2)
6.8 Fluctuation-Dissipation Theorem
323(12)
6.8.1 Elementary Version of the Fluctuation-Dissipation Theorem; Langevin Equation, Johnson Noise in a Resistor, and Relaxation Time for Brownian Motion
323(8)
6.8.2 Generalized Fluctuation-Dissipation Theorem; Thermal Noise in a Laser Beam's Measurement of Mirror Motions; Standard Quantum Limit for Measurement Accuracy and How to Evade It
331(4)
6.9 Fokker-Planck Equation
335(12)
6.9.1 Fokker-Planck for a 1-Dimensional Markov Process
336(4)
6.9.2 Optical Molasses: Doppler Cooling of Atoms
340(3)
6.9.3 Fokker-Planck for a Multidimensional Markov Process; Thermal Noise in an Oscillator
343(2)
Bibliographic Note
345(2)
References 347(6)
Name Index 353(2)
Subject Index 355(12)
Contents of the Unified Work, Modern Classical Physics 367(8)
Preface to Modern Classical Physics 375(8)
Acknowledgments for Modem Classical Physics 383
Kip S. Thorne, winner of the Nobel Prize in physics, is the Feynman Professor Emeritus of Theoretical Physics at Caltech. His books include Gravitation (Princeton) and Black Holes and Time Warps: Einsteins Outrageous Legacy. Roger D. Blandford, winner of the Crafoord and Shaw prizes in astronomy, is the Luke Blossom Professor in the School of Humanities and Sciences and founding director of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University.