|
|
1 | (38) |
|
1.1 Overview and Learning Goals |
|
|
1 | (1) |
|
1.2 Getting Started with R |
|
|
2 | (8) |
|
1.2.1 Opening a Dataset: face-data. csv |
|
|
2 | (4) |
|
1.2.2 Some Useful Commands for Exploring a Dataset |
|
|
6 | (2) |
|
1.2.3 Scalars, Vectors, Matrices, Data.frames, Objects |
|
|
8 | (2) |
|
|
10 | (3) |
|
1.3.1 Outliers and Unrealistic Values |
|
|
11 | (2) |
|
|
13 | (7) |
|
|
13 | (1) |
|
|
14 | (3) |
|
1.4.3 Dispersion, Skewness, and Kurtosis |
|
|
17 | (2) |
|
1.4.4 A Note on Aggregated Data |
|
|
19 | (1) |
|
|
20 | (11) |
|
1.5.1 Describing Nominal/ordinal Variables |
|
|
21 | (2) |
|
1.5.2 Describing Interval/ratio Variables |
|
|
23 | (2) |
|
1.5.3 Relations Between Variables |
|
|
25 | (1) |
|
|
26 | (1) |
|
1.5.5 Plotting Mathematical Functions |
|
|
27 | (3) |
|
1.5.6 Frequently Used Arguments |
|
|
30 | (1) |
|
1.6 Other R Plotting Systems (And Installing Packages) |
|
|
31 | (8) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (4) |
|
|
37 | (2) |
|
2 Sampling Plans and Estimates |
|
|
39 | (42) |
|
|
39 | (2) |
|
2.2 Definitions and Standard Terminology |
|
|
41 | (3) |
|
2.3 Non-representative Sampling |
|
|
44 | (1) |
|
2.3.1 Convenience Sampling |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
2.4 Representative Sampling |
|
|
45 | (8) |
|
2.4.1 Simple Random Sampling |
|
|
46 | (3) |
|
2.4.2 Systematic Sampling |
|
|
49 | (1) |
|
2.4.3 Stratified Sampling |
|
|
50 | (1) |
|
|
51 | (2) |
|
2.5 Evaluating Estimators Given Different Sampling Plans |
|
|
53 | (11) |
|
2.5.1 Generic Formulation of Sampling Plans |
|
|
53 | (1) |
|
2.5.2 Bias, Standard Error, and Mean Squared Error |
|
|
54 | (3) |
|
2.5.3 Illustration of a Comparison of Sampling Plans |
|
|
57 | (2) |
|
2.5.4 Comparing Sampling Plans Using R |
|
|
59 | (5) |
|
2.6 Estimation of the Population Mean |
|
|
64 | (8) |
|
2.6.1 Simple Random Sampling |
|
|
64 | (3) |
|
2.6.2 Systematic Sampling |
|
|
67 | (1) |
|
2.6.3 Stratified Sampling |
|
|
68 | (1) |
|
|
69 | (3) |
|
2.7 Estimation of the Population Proportion |
|
|
72 | (1) |
|
2.8 Estimation of the Population Variance |
|
|
73 | (2) |
|
2.8.1 Estimation of the MSE |
|
|
74 | (1) |
|
|
75 | (6) |
|
|
75 | (4) |
|
|
79 | (2) |
|
|
81 | (22) |
|
|
81 | (1) |
|
3.2 Definitions of Probability |
|
|
82 | (2) |
|
|
84 | (2) |
|
3.3.1 Example: Using the Probability Axioms |
|
|
85 | (1) |
|
3.4 Conditional Probability |
|
|
86 | (3) |
|
3.4.1 Example: Using Conditional Probabilities |
|
|
87 | (2) |
|
3.4.2 Computing Probabilities Using R |
|
|
89 | (1) |
|
|
89 | (4) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
3.5.4 Example: Using Risk Measures |
|
|
92 | (1) |
|
3.6 Sampling from Populations: Different Study Designs |
|
|
93 | (3) |
|
3.6.1 Cross-Sectional Study |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (2) |
|
|
98 | (5) |
|
|
98 | (4) |
|
|
102 | (1) |
|
4 Random Variables and Distributions |
|
|
103 | (38) |
|
|
103 | (1) |
|
4.2 Probability Density Functions |
|
|
104 | (8) |
|
4.2.1 Normal Density Function |
|
|
105 | (3) |
|
4.2.2 Lognormal Density Function |
|
|
108 | (1) |
|
4.2.3 Uniform Density Function |
|
|
109 | (1) |
|
4.2.4 Exponential Density Function |
|
|
110 | (2) |
|
4.3 Distribution Functions and Continuous Random Variables |
|
|
112 | (4) |
|
4.4 Expected Values of Continuous Random Variables |
|
|
116 | (3) |
|
4.5 Distributions of Discrete Random Variables |
|
|
119 | (2) |
|
4.6 Expected Values of Discrete Random Variables |
|
|
121 | (1) |
|
4.7 Well-Known Discrete Distributions |
|
|
122 | (5) |
|
4.7.1 Bernoulli Probability Mass Function |
|
|
122 | (1) |
|
4.7.2 Binomial Probability Mass Function |
|
|
122 | (2) |
|
4.7.3 Poisson Probability Mass Function |
|
|
124 | (1) |
|
4.7.4 Negative Binomial Probability Mass Function |
|
|
125 | (1) |
|
4.7.5 Overview of Moments for Weil-Known Discrete Distributions |
|
|
126 | (1) |
|
4.8 Working with Distributions in R |
|
|
127 | (5) |
|
4.8.1 R Built-in Functions |
|
|
127 | (1) |
|
4.8.2 Using Monte-Carlo Methods |
|
|
128 | (3) |
|
4.8.3 Obtaining Draws from Distributions: Inverse Transform Sampling |
|
|
131 | (1) |
|
4.9 Relationships Between Distributions |
|
|
132 | (2) |
|
|
133 | (1) |
|
|
133 | (1) |
|
4.10 Calculation Rules for Random Variables |
|
|
134 | (2) |
|
4.10.1 Rules for Single Random Variables |
|
|
134 | (1) |
|
4.10.2 Rules for Two Random Variables |
|
|
135 | (1) |
|
|
136 | (5) |
|
|
136 | (4) |
|
|
140 | (1) |
|
|
141 | (30) |
|
|
141 | (1) |
|
5.2 From Population Characteristics to Sample Statistics |
|
|
142 | (3) |
|
5.2.1 Population Characteristics |
|
|
143 | (1) |
|
5.2.2 Sample Statistics Under Simple Random Sampling |
|
|
144 | (1) |
|
5.3 Distributions of Sample Statistic Tn |
|
|
145 | (9) |
|
5.3.1 Distribution of the Sample Maximum or Minimum |
|
|
146 | (1) |
|
5.3.2 Distribution of the Sample Average X |
|
|
147 | (2) |
|
5.3.3 Distribution of the Sample Variance S2 |
|
|
149 | (1) |
|
5.3.4 The Central Limit Theorem |
|
|
149 | (3) |
|
5.3.5 Asymptotic Confidence Intervals |
|
|
152 | (2) |
|
5.4 Normally Distributed Populations |
|
|
154 | (5) |
|
5.4.1 Confidence Intervals for Normal Populations |
|
|
156 | (3) |
|
5.4.2 Lognormally Distributed Populations |
|
|
159 | (1) |
|
5.5 Methods of Estimation |
|
|
159 | (12) |
|
|
160 | (2) |
|
5.5.2 Maximum Likelihood Estimation |
|
|
162 | (5) |
|
|
167 | (2) |
|
|
169 | (2) |
|
6 Multiple Random Variables |
|
|
171 | (70) |
|
|
171 | (1) |
|
6.2 Multivariate Distributions |
|
|
172 | (7) |
|
6.2.1 Definition of Independence |
|
|
173 | (1) |
|
6.2.2 Discrete Random Variables |
|
|
174 | (3) |
|
6.2.3 Continuous Random Variables |
|
|
177 | (2) |
|
6.3 Constructing Bivariate Probability Distributions |
|
|
179 | (4) |
|
6.3.1 Using Sums of Random Variables |
|
|
179 | (1) |
|
6.3.2 Using the Farlie-Gumbel-Morgenstern Family of Distributions |
|
|
180 | (1) |
|
6.3.3 Using Mixtures of Probability Distributions |
|
|
181 | (2) |
|
6.3.4 Using the Frechet Family of Distributions |
|
|
183 | (1) |
|
6.4 Properties of Multivariate Distributions |
|
|
183 | (8) |
|
|
184 | (2) |
|
|
186 | (5) |
|
6.5 Measures of Association |
|
|
191 | (8) |
|
6.5.1 Pearson's Correlation Coefficient |
|
|
191 | (4) |
|
6.5.2 Kendall's Tau Correlation |
|
|
195 | (1) |
|
6.5.3 Spearman's Rho Correlation |
|
|
196 | (1) |
|
6.5.4 Cohen's Kappa Statistic |
|
|
197 | (2) |
|
6.6 Estimators of Measures of Association |
|
|
199 | (14) |
|
6.6.1 Pearson's Correlation Coefficient |
|
|
199 | (3) |
|
6.6.2 Kendall's Tau Correlation Coefficient |
|
|
202 | (2) |
|
6.6.3 Spearman's Rho Correlation Coefficient |
|
|
204 | (3) |
|
6.6.4 Should We Use Pearson's Rho, Spearman's Rho or Kendall's Tau Correlation? |
|
|
207 | (2) |
|
6.6.5 Cohen's Kappa Statistic |
|
|
209 | (2) |
|
6.6.6 Risk Difference, Relative Risk, and Odds Ratio |
|
|
211 | (2) |
|
6.7 Other Sample Statistics for Association |
|
|
213 | (10) |
|
6.7.1 Nominal Association Statistics |
|
|
213 | (4) |
|
6.7.2 Ordinal Association Statistics |
|
|
217 | (2) |
|
6.7.3 Binary Association Statistics |
|
|
219 | (4) |
|
6.8 Exploring Multiple Variables Using R |
|
|
223 | (12) |
|
6.8.1 Associations Between Continuous Variables |
|
|
223 | (3) |
|
6.8.2 Association Between Binary Variables |
|
|
226 | (6) |
|
6.8.3 Association Between Categorical Variables |
|
|
232 | (3) |
|
|
235 | (6) |
|
|
235 | (3) |
|
|
238 | (3) |
|
7 Making Decisions in Uncertainty |
|
|
241 | (46) |
|
|
241 | (1) |
|
|
242 | (9) |
|
7.2.1 The Basic Idea Behind the Bootstrap |
|
|
243 | (2) |
|
7.2.2 Applying the Bootstrap: The Non-parametric Bootstrap |
|
|
245 | (2) |
|
7.2.3 Applying the Bootstrap: The Parametric Bootstrap |
|
|
247 | (1) |
|
7.2.4 Applying the Bootstrap: Bootstrapping Massive Datasets |
|
|
248 | (3) |
|
7.2.5 A Critical Discussion of the Bootstrap |
|
|
251 | (1) |
|
|
251 | (31) |
|
7.3.1 The One-Sided z-Test for a Single Mean |
|
|
253 | (3) |
|
7.3.2 The Two-Sided z-Test for a Single Mean |
|
|
256 | (2) |
|
7.3.3 Confidence Intervals and Hypothesis Testing |
|
|
258 | (1) |
|
7.3.4 The t-Tests for Means |
|
|
259 | (4) |
|
7.3.5 Non-parametric Tests for Medians |
|
|
263 | (6) |
|
7.3.6 Tests for Equality of Variation from Two Independent Samples |
|
|
269 | (2) |
|
7.3.7 Tests for Independence Between Two Variables |
|
|
271 | (3) |
|
7.3.8 Tests for Normality |
|
|
274 | (2) |
|
|
276 | (4) |
|
7.3.10 Equivalence Testing |
|
|
280 | (2) |
|
|
282 | (5) |
|
|
283 | (2) |
|
|
285 | (2) |
|
|
287 | |
|
|
287 | (1) |
|
8.2 Bayes' Theorem for Population Parameters |
|
|
288 | (5) |
|
8.2.1 Bayes' Law for Multiple Events |
|
|
290 | (1) |
|
8.2.2 Bayes' Law for Competing Hypotheses |
|
|
290 | (1) |
|
8.2.3 Bayes' Law for Statistical Models |
|
|
291 | (1) |
|
8.2.4 The Fundamentals of Bayesian Data Analysis |
|
|
292 | (1) |
|
8.3 Bayesian Data Analysis by Example |
|
|
293 | (8) |
|
8.3.1 Estimating the Parameter of a Bernoulli Population |
|
|
293 | (2) |
|
8.3.2 Estimating the Parameters of a Normal Population |
|
|
295 | (1) |
|
8.3.3 Bayesian Analysis for Normal Populations Based on Single Observation |
|
|
296 | (2) |
|
8.3.4 Bayesian Analysis for Normal Populations Based on Multiple Observations |
|
|
298 | (1) |
|
8.3.5 Bayesian Analysis for Normal Populations with Unknown Mean and Variance |
|
|
299 | (2) |
|
8.4 Bayesian Decision-Making in Uncertainty |
|
|
301 | (6) |
|
8.4.1 Providing Point Estimates of Parameters |
|
|
301 | (2) |
|
8.4.2 Providing Interval Estimates of the Parameters |
|
|
303 | (2) |
|
|
305 | (2) |
|
8.5 Challenges Involved in the Bayesian Approach |
|
|
307 | (6) |
|
|
308 | (3) |
|
8.5.2 Bayesian Computation |
|
|
311 | (2) |
|
8.6 Software for Bayesian Analysis |
|
|
313 | (4) |
|
8.6.1 A Simple Bernoulli Model Using Stan |
|
|
314 | (3) |
|
8.7 Bayesian and Frequentist Thinking Compared |
|
|
317 | (1) |
|
|
318 | |
|
|
319 | (1) |
|
|
320 | |