Muutke küpsiste eelistusi

E-raamat: Statistics for Library and Information Services: A Primer for Using Open Source R Software for Accessibility and Visualization

  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Nov-2015
  • Kirjastus: Rowman & Littlefield Publishers
  • Keel: eng
  • ISBN-13: 9781442249936
  • Formaat - PDF+DRM
  • Hind: 123,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Nov-2015
  • Kirjastus: Rowman & Littlefield Publishers
  • Keel: eng
  • ISBN-13: 9781442249936

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Statistics for Library and Information Services, written for non-statisticians, provides logical, user-friendly, and step-by-step instructions to make statistics more accessible for students and professionals in the field of Information Science. It emphasizes concepts of statistical theory and data collection methodologies, but also extends to the topics of visualization creation and display, so that the reader will be able to better conduct statistical analysis and communicate his/her findings.

The book is tailored for information science students and professionals. It has specific examples of dataset sets, scripts, design modules, data repositories, homework assignments, and a glossary lexicon that matches the field of Information Science. The textbook provides a visual road map that is customized specifically for Information Science instructors, students, and professionals regarding statistics and visualization.

Each chapter in the book includes full-color illustrations on how to use R for the statistical model that particular chapter will cover.

This book is arranged in 17 chapters, which are organized into five main sections: ·the first section introduces research design and data collection; ·the second section discusses basic statistical concepts, including descriptive, bivariate, time series, and regression analyses; ·section 3 covers the subject of visualization creation using Open Source R;

·section 4 covers decision making from the analysis; and ·the last section provides examples and references.

Every chapter illustrates how to use Open Source R and features two subsections for the major ideas of the chapter: its statistical model and its visual representation. The statistical model captures the main statistical formulas/theories covered in each chapter, while the visual representation addresses the subject of the types of visualization that are produced from the statistical analysis model covered in that particular chapter.

Dont miss the books companion Web site at www.statisticsforlis.org

Arvustused

Dr. Friedmans book arrives at the right time as library and information professionals begin to grapple with the complexities of big data. This well-written and clearly organized primer will be a valuable addition to the LIS curriculum - it is clearly the moment for us to have a textbook that introduces statistics and an open source statistical computing language for our students and for information professionals from an insider who knows our field well. -- Howard Rosenbaum, Professor of Information Science and Associate Dean for Graduate Studies, Department of Information and Library Science, Indiana University

List of Figures
vii
Acknowledgments xi
Preface xiiii
PART I INTRODUCTION TO STATISTICS
1 Introduction
3(10)
2 Research Design
13(16)
3 Data (Types and Collection Methods)
29(16)
4 How to Run R
45(22)
PART II MAKING SENSE OF STATISTICS
5 Descriptive Statistics
67(12)
6 Bivariate Statistics
79(10)
7 Probability Theory
89(16)
8 Random Variables and Probability Distributions
105(18)
9 Sampling
123(26)
10 Confidence Interval Estimation
149(22)
11 Fundamentals of Hypothesis Testing
171(18)
12 Correlation and Regression
189(16)
13 Analysis of Variances and Chi-Square Tests
205(30)
14 Time Series and Predictive Analytics
235(22)
PART III VISUALIZATION IN R
15 Visualization Display
257(20)
16 Advanced Visualization Display
277(22)
17 Applying Visualization to Statistics Analysis
299(42)
APPENDIX A Statistics Formula Sheet
315(4)
APPENDIX B Z Score Table
319(4)
APPENDIX C Useful R Commands
323(18)
References 341(4)
Index 345(10)
About the Author 355
Alon Friedman is an Assistant Professor at the School of Information at the University of South Florida. He teaches Introduction to Visualization and Big Data to undergraduate and graduate students. Previously he has taught introductory and advanced statistics undergraduate, graduate, and PhD students for 10 years across the New York City region. His research interests and expertise focus on classification and visualization using Open Source R. Alon also has worked as a web programmer in NYC and Tel Aviv.