Muutke küpsiste eelistusi

E-raamat: Statistics and Machine Learning Methods for EHR Data: From Data Extraction to Data Analytics

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data.

Key Features:











Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains.





Documents the detailed experience on EHR data extraction, cleaning and preparation





Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data.





Considers the complete cycle of EHR data analysis.

The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.

Arvustused

'This book should make it to the bookshelf of anyone involved in data preparation and statistical analysis for EHR research.'

- Madan G. Kandu, Journal of Biopharmaceutcal Statistics, Vol 31, No 4

'To conclude, this book provides a strong basis for handling real-world data from EHR and will be useful both for the beginner and for more advanced researchers.'

- Sébastien Bailly, International Society for Clinical Biostatistics, 72, 2021

1. Introduction: Use of EHR Data for ResearchChallenges and
Opportunities. 2. EHR Project Management. 3. EHR Databases: Data Queries and
Extraction. 4. EHR Data Cleaning. 5. EHR Data Pre-Processing and Preparation.
6. EHR Missing Data Issues.
7. Causal Inference and Analysis for EHR Data.
8. EHR Data Exploration, Analysis and Predictions: Statistical Models and
Methods. 9. EHR Data Analytics and Predictions: Neural Network and Deep
Learning Methods. 10. EHR Data Analytics and Predictions: Other Machine
Learning Methods. 11. Use of EHR Data for Research: Future.
Hulin Wu, PhD, the endowed Betty Wheless Trotter Professor and Chair, Department of Biostatistics & Data Science, School of Public Health (SPH), University of Texas Health Science Center at Houston (UTHealth). Dr. Wu also holds a joined appointment as Professor at UTHealth School of Biomedical Informatics. Dr. Wu received BS and MS training in engineering and PhD in statistics. He has many years of experience in developing novel statistical methods, mathematical models and informatics tools for biomedical data analysis and modeling. He is the Founding Director of the Center for Big Data in Health Sciences (CBD-HS) and he is directing the EHR research working group at UTHealth SPH.











Dr. Yamal is a tenured Associate Professor in the Department of Biostatistics & Data Science and a member of the Coordinating Center for Clinical Trials at UTHealth School of Public Health. Dr. Yamal has extensive experience in clinical trials including data coordinating centers and serving on Data Safety Monitoring Boards for clinical trials in stroke and traumatic brain injury. He has also contributed towards statistical methodology for classification problems for nested data as well as machine learning applications.





Ashraf Yaseen is an Assistant Professor of Data Science at the School of Public Health, UTHealth. He has extensive experience in database design, implementation and management, machine learning, and high-performance computing. In his current research work, Dr. Yaseen is exploring big data integration and deep learning technologies in electronic health records to address clinical and public health questions.











Vahed Maroufy, PhD, Assistant Professor, Department of Biostatistics & Data Science, UTHealth School of Public Health. Dr. Maroufy received MSc and PhD training in statistics and has experience in applied and theoretical statistics, including geometry of statistical models, mixture models, Bayesian inference, predictive models using EHR data, and analysis of genetic data in cancer research.